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Abstract: Although research on wildlife species across taxa has shown that males and females
may differentially select habitat, sex-specific habitat suitability models for endangered species are
uncommon. We developed sex-specific models for Bengal tigers (Panthera tigris) based on camera
trapping data collected from 20 January to 22 March 2010 within Chitwan National Park, Nepal, and
its buffer zone. We compared these to a sex-indiscriminate habitat suitability model to assess the
benefits of a sex-specific approach to habitat suitability modeling. Our sex-specific models produced
more informative and detailed habitat suitability maps and highlighted vital differences in the spatial
distribution of suitable habitats for males and females, specific associations with different vegetation
types, and habitat use near human settlements. Improving and refining habitat models for this
and other critically endangered species provides the necessary information to meet established
conservation goals and population recovery targets.

Keywords: sex-specific modeling; species distribution model; tiger conservation

1. Introduction

The accelerated pace of human development and land-use change, overexploitation of
natural capital, and environmental degradation have caused a loss of terrestrial mammal
habitat quality during the past two centuries, especially for sizeable terrestrial carnivore
species [1–5]. These large-bodied, wide-ranging carnivores are often at the top of food
webs, with low abundances due to their high metabolic demands and requiring high prey
abundance and expansive habitats for persistence. Large predators are also more sensitive
to human-induced climate change, habitat loss, and fragmentation than smaller, less wide-
ranging species [6]. As a result, human-induced habitat loss and degradation, along with
direct persecution or harvest and depletion of prey, have given rise to a massive decline
in large carnivore population size and geographic range worldwide, jeopardizing the
enormous economic and ecosystem services they deliver to humans such as maintaining
mammal, avian, invertebrate, and herpetofauna abundance [7].

Tigers (Panthera tigris) are an iconic species, among the 31 largest mammalian car-
nivores considered globally important [8]. Currently, tigers inhabit less than 7% of their
historical geographic range, and fewer than 4000 animals live in the wild [9]. Despite
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numerous long-standing tiger conservation initiatives, 41% of this range contraction oc-
curred between 1996 and 2006 [10]. Range limitations are due primarily to human activities,
including land cover conversions to human land uses and development. Prey depletion,
likely due to human hunting and illegal killing, is pervasive and has led to the extirpation
of formerly well-established tiger populations from several protected areas. Today, the
tigers that remain in the wild are sparsely distributed across the Asian landscape, primarily
restricted to a patchy, disconnected network of protected areas. Thus, in the context of
global tiger conservation, protecting suitable habitats that can support a large population
of breeding tigers is crucial.

Identifying high-quality habitats for tigers requires understanding the many factors
that influence habitat use, including demographic characteristics, such as sex. Several
studies have identified differences in the selection and distribution of habitats for males and
females. For example, studies of black bears (Ursus americanus), brown bears (Ursus arctos),
cheetahs (Acinonyx jubatus), Florida panthers (Puma concolor coryi), and jaguars (Panthera
onca) have all shown significant sex-mediated differences in preferred vegetation type and
density, home range size, and aversion to roads [11–13]. These essential differences are
likely due to sexual dimorphism and differences in energy consumption, reproduction,
and other life-history attributes. Indeed, in the Russian Far East, adult male tigers must
consume a minimum of 5.2 kg/day, whereas an adult female raising four cubs needs
an average of 11.4 kg/day over the reproduction period. To capture some of these sex-
based differences in habitat selection, Carter et al. (2015) used an agent-based model to
simulate tiger population dynamics in Chitwan National Park (CNP), Nepal, with female
tigers developing exclusive territories based on prey abundances, while males established
exclusive territories overlapping those of multiple females [14,15]. Most models of tiger
habitat suitability, however, pool male and female occurrences, potentially obscuring sex-
specific information about habitat selection and mischaracterizing habitat suitability across
landscapes [16–18]. Consequently, land managers may implement ineffective or counter-
productive tiger conservation interventions as strategies to protect specific habitats based
on sex-indiscriminate models that may not adequately incorporate the habitat requirements
of breeding females, the population’s fundamental reproductive unit.

Here, we develop sex-specific habitat suitability models using camera trapping data
collected within and adjacent to CNP to determine how male and female tiger habitats are
distributed, identify what factors influence their distributions, and determine to what de-
gree habitat distributions of male and female tigers differ. We also test a sex-indeterminate
model for all tiger occurrences and compare the results to the sex-specific models. CNP is
the focus of our efforts as it is home to approximately three-quarters of Nepal’s protected
wild tiger population and is one of only 28 reserves in the world that can support more
than 25 breeding female tigers [19]. CNP is also a fundamental part of the local economy
for over 200,000 people who live in the Chitwan Valley [20]. Many residents rely on the
natural resources within or adjacent to CNP to supplement their income and livelihood
materials [20,21]. Human activities in and around CNP likely affect tiger habitat qual-
ity [22]. Although the analysis focuses on CNP, the methodological tools and techniques
we present can serve as a template for assessing sex-specific habitat suitability for large
carnivore species, including tigers, throughout their range. Information on sex-specific
habitat suitability can be combined with other data on demographic dynamics, such as
age-class composition and change over time, to better tailor conservation actions.

2. Data and Methods
2.1. Study Area

Established in 1973 as Nepal’s first national park, CNP (roughly 1200 km2) lies between
the Churia and Mahabharat Ranges and has a tropical climate, with a mean annual rainfall
of over 2100 mm [23]. Sal forest (Shorea robusta) covers approximately 73% of the park,
followed by 12% grassland, 8% riverine forest, and 3% water [24]. Today CNP is a United
Nations Educational, Scientific, and Cultural Organisation (UNESCO) World Heritage
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Site and constitutes the core of the Terai Arc Landscape (TAL)—a crescent-shaped area
of approximately 12.5 million acres which lies along the border of India and Nepal [21].
This landscape includes 15 fragmented protected areas, which support some of the world’s
highest tiger densities [25]. Importantly, our study site also includes a portion of the
surrounding buffer zone forests, established in 1996 and managed by local user groups
that decide when forest resources may be extracted, and how much (Figure 1).

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 15 
 

2. Data and Methods 

2.1. Study Area 

Established in 1973 as Nepal’s first national park, CNP (roughly 1200 km2) lies 

between the Churia and Mahabharat Ranges and has a tropical climate, with a mean 

annual rainfall of over 2100 mm [23]. Sal forest (Shorea robusta) covers approximately 73% 

of the park, followed by 12% grassland, 8% riverine forest, and 3% water [24]. Today CNP 

is a United Nations Educational, Scientific, and Cultural Organisation (UNESCO) World 

Heritage Site and constitutes the core of the Terai Arc Landscape (TAL)—a crescent-

shaped area of approximately 12.5 million acres which lies along the border of India and 

Nepal [21]. This landscape includes 15 fragmented protected areas, which support some 

of the world's highest tiger densities [25]. Importantly, our study site also includes a 

portion of the surrounding buffer zone forests, established in 1996 and managed by local 

user groups that decide when forest resources may be extracted, and how much (Figure 

1). 

 

Figure 1. Study area and camera trapping locations. 

From 20 January to 22 March 2010, surveys to assess the distribution and number of 

tigers and their prey used 310 camera traps (Figure 1). The trap sampling design sought 

to minimize spatial bias and maximize the number of tiger images captured, using 

knowledge from previous field survey data on tiger movements and signs. Researchers 

placed the cameras along park roads, fire-lines, river and stream beds, ridge tops, and 

animal trails between 1.5 and 2 kilometers apart. The cameras operated for 4793 trap 

nights (i.e., cumulative nights). From 344 tiger photographs, 62 individuals were 

identified, including 15 males with 95 total detections, 41 females with 164 total detections, 

and six unidentified sub-adults  [26]. We were able to identify female tigers in 69 camera 

locations and males in 57 locations, and in general, 108 of the 310 camera traps detected 

at least one tiger. 

2.2. Variable Generation and Selection 

Mazak (1997) identified a suite of important tiger habitat variables, including 

vegetation type and density, prey abundance, and distance to water. We included these 

variables in our analysis. In addition, we included elevation and distance to human 

settlements as potential predictor variables, which we will justify later. 

A land cover map for the entire study area was necessary to measure tiger 

distribution response to vegetation type and density. The unsupervised classification 

Figure 1. Study area and camera trapping locations.

From 20 January to 22 March 2010, surveys to assess the distribution and number of
tigers and their prey used 310 camera traps (Figure 1). The trap sampling design sought to
minimize spatial bias and maximize the number of tiger images captured, using knowledge
from previous field survey data on tiger movements and signs. Researchers placed the
cameras along park roads, fire-lines, river and stream beds, ridge tops, and animal trails
between 1.5 and 2 kilometers apart. The cameras operated for 4793 trap nights (i.e., cumula-
tive nights). From 344 tiger photographs, 62 individuals were identified, including 15 males
with 95 total detections, 41 females with 164 total detections, and six unidentified sub-adults
[26]. We were able to identify female tigers in 69 camera locations and males in 57 locations,
and in general, 108 of the 310 camera traps detected at least one tiger.

2.2. Variable Generation and Selection

Mazak (1997) identified a suite of important tiger habitat variables, including vegeta-
tion type and density, prey abundance, and distance to water. We included these variables
in our analysis. In addition, we included elevation and distance to human settlements as
potential predictor variables, which we will justify later.

A land cover map for the entire study area was necessary to measure tiger distribu-
tion response to vegetation type and density. The unsupervised classification algorithm
ISODATA in Erdas Imagine 2014 generated the land cover map. Two cloud-free, 30-m reso-
lution Landsat 8 images from March 2015 created a composite image consisting of the blue,
green, and red spectral bands and the normalized difference vegetation index (NDVI). For
each image, the algorithm classified the landscape into five categories: Sal forest, riverine
forest, grassland, water, and exposed soil [24]. We used 2015 imagery for several reasons:
(1) there was no full coverage, (2) imagery often had a large percent of cloud coverage,
and (3) there was a “scan line” issue, where 2015 was the closest date we could get full
coverage of the study area. Accuracy assessments compared a random stratified sample of
150 points to similar vegetation classifications for the study area in the same period and
earlier from high-resolution imagery [17,24]. In addition, ground reference data included
vegetation types recorded at each camera trap. The accuracy assessment did not include
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locations that lacked confidence in accuracy. In total, 428 accuracy assessment locations
yielded an overall accuracy of 88%. From this classification, focal statistics describing the
percent cover of each vegetation type within a 400-meter distance from water features and
human settlements were derived for every cell in the study area using ArcGIS 10.2. We
chose 400 meters because long-term radio telemetry studies within CNP have established
that tigers actively search for prey within a radius of 400 meters [27].

Prey abundance is vital for the survival of large carnivores such as tigers, and large
mammalian prey found in our study site include chital (Axis axis), sambar (Rusa unicolor),
wild boar (Sus scrofa), and gaur (Bos gaurus) [26,28,29]. Prey abundances for this research
were derived from the camera data using Empirical Bayesian Kriging (EBK) in ArcGIS
10.2 at the same 30-meter resolution of our land cover classification. EBK is an interpo-
lation method that uses data subsetting and repeated simulations to account for data
non-stationarity and estimate uncertainty in the final semivariogram.

Multicollinearity tests sought to identify highly correlated predictor variables. The
two most highly correlated variables were the percent cover of Sal forest and percent cover
of grassland (r = −0.7; Table 1). When tested against each group individually, models
including the percent cover of Sal forest performed best without its highly correlated
partner, the percent cover of grassland. Therefore, our final models excluded the percent
cover of grassland. Both distance to human-disturbed areas and distance to water highly
correlated with elevation (r = 0.66 and 0.64, respectively). As the range of elevations within
our study site (112–844 m) is well within the range of elevations that tigers are known to
inhabit and prefer in Nepal (< 2000 m and <1500 m respectively [30], then all of our final
models excluded elevation. The last suite of predictor variables included in our models
was prey abundance, percent cover of Sal forest, percent cover of riverine forest, distance
to water, and distance to human settlements.

Table 1. Correlation matrix for potential predictor variables (Pearson’s r with a p-value in parentheses).

Dist. to
Water

Dist. to
Human Prey Elevation %

Grass
%

Riverine
%

Sal
Dist. to
Water 1 0.5241

(2.2 × 10−16)
−0.1143
(0.0443)

0.6498
(2.2 × 10−16)

−0.3731
(1.12 × 10−11)

−0.3068
(3.49 × 10−8)

0.5527
(2.2 × 10−16)

Dist. to
Human 1 −0.2085

(0.0002)
0.6694

(2.2 × 10−16)
−0.3320

(2.04 × 10−9)
−0.3310

(2.3 × 10−9)
0.5152

(2.2 × 10−16)

Prey 1 −0.1321
(0.0210)

0.3767
(6.8 × 10−12)

0.1297
(0.0223)

−0.3447
(4.44 × 10−10)

Elevation 1 −0.3310
(3.19 × 10−9)

−0.2877
(3.17 × 10−7)

0.4819
(2.2 × 10−16)

% Grass 1 −0.0269
(0.6359)

−0.7085
(2.2 × 10−16)

% Riverine 1 −0.5686
(2.2 × 10−16)

% Sal 1

2.3. Statistical Modeling

We used two analytical frameworks to identify sex-specific habitats for tigers in CNP,
maximum entropy (Maxent) [31] and Bayesian occupancy modeling frameworks [32].
These models aimed to study the habitat selection variability and differences within the
protected area between males and females and shed light on the differences between the
two modeling techniques.

2.3.1. Maxent

Maxent is a general-purpose modeling software designed to work with presence-only
data. It models habitat suitability for a species by estimating the target probability distri-
bution with maximum entropy, subject to certain constraint variables, such as sunlight
and water availability. Of all possible probability distributions that meet these constraints,
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Maxent chooses the most spread out distribution, that is, the closest to a uniform distri-
bution [31,33,34]. In numerous studies, Maxent has shown equal or superior predictive
accuracy than other presence-only modeling methods [35–37].

Accepting Maxent’s default settings risks creating over-parameterized and overfitting
models. We adjusted the regularization multiplier (RM) to estimate response curves for
environmental predictors to address this issue. Increasing the RM helps to create smoother,
more ecologically realistic responses. However, as RM increases, curves become over
smoothed, and model accuracy measures are negatively affected. To find the optimal RM;
we used a method developed by Warren (2012) to generate Akaike’s Information Criterion
(AIC) for models with varying RM. After selecting the final group of predictors, we ran
each model using RMs between 1 and 20 and assessed model AIC. In all cases, Maxent’s
default settings produced more than twice as many parameters, as well as higher AIC
values, when compared to our final models.

Model Evaluation

AUC, however, presents concerns regarding presence-only data. When there is no
absence data, the axis representing the rate of false positives is replaced by the proportion of
area predicted as present. As a result, by increasing the study area’s geographic extent (i.e.,
including an increasingly heterogeneous environmental background) modelers can increase
the rate of correctly predicted absences, artificially inflating AUC scores [38]. Hence, AUC
is greatly affected by how widespread a species is within the study area, which is one
explanation for why rare species restricted to a smaller subset of environmental variables
across their range tend to have higher AUC scores than widespread species [36,39]. To
address this potential bias, we supplemented the use of AUC as a model evaluation
statistic by comparing our models to a null model for significance testing [40]. A total
of 1000 random distributions of 57, 69, and 108 points (equal to the number of males,
females, and sex-indiscriminate occurrence locations, respectively) were generated within
the study area. Each random distribution was modeled using the same parameters as its
corresponding true data model (Table 2). Afterward, the resulting AUCs were compared
to the test AUCs of each true data model. In all cases, the data model’s p-value compared
to its corresponding null model was less than 0.001, demonstrating that each was highly
significant compared to random predictions generated by chance.

Table 2. Statistical significance of true model compared to the random model.

n Avg. AUC Standard
Deviation p-Value

Female
True 69 0.7086 0.2486 2.72 × 10−14

Random 1000 0.5143 0.2762

Male
True 57 0.6692 0.2892 3.73 × 10−9

Random 1000 0.4984 0.2572

Sex-Indiscriminate
True 108 0.6885 0.2780 2.06 × 10−10

Random 1000 0.5041 0.2830

2.3.2. Occupancy Modelling

Occupancy modeling involves sampling a location with a given number of sites and
determining whether a site is occupied by modeling the presence–absence information [32].
An occupancy model is a hierarchical model that uses joint probability distributions to
tackle the problem that species are imperfectly detected. Model assumptions for “inde-
pendence between sampling sites” create spacing requirements of cameras between sites
that are very large for species like tigers, whose home ranges are naturally vast. However,
these assumptions can be relaxed to model “use” [41]; therefore, the information can be
used for a hierarchical model with the probability of use and probability of detection that
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models the resource selection probability function [17]. The model consists of two logistic
regression models, variation in use between sites, and detectability [42]. Observed data
consist of a site (i) × sample (j) matrix of presence/absence data for the entire dataset
and for males and females separately. The dependent variable yij indicates a tiger was
detected (yij = 1) or not detected (yij = 0) at site i (1, . . . , 310 sites) during survey j (1, . . . .;
62 surveys). We describe the observation process (detection) as

yij
∣∣zi ∼ Bernoulli

(
zi x pij

)
. (1)

The observations are modeled as a product of the z-matrix (zi) for each site i and the
detection probability pij, which is the probability of detecting a tiger at site i during survey
j. Deriving the z-matrix is dependent on the ecological processes modeled by the true
occupancy (ψi):

zi ∼ Bernoulli(ψi). (2)

The model of species response to landscape covariates for occupancy:

logit(ψi) = β0 + β1 ∗ covariate1 . . . + βk ∗ covariatek (3)

logit
(

pij
)
= αk (4)

All occupancy models were fitted in a Bayesian framework using jagsUI in program
R [43]. We used non-informative priors and ran three chains for 5000 iterations, burning
1000 and thinning 100. The convergence of the models was assessed by having an R-hat of
<1.1, which is considered to be acceptable in the literature.

Model Evaluation

Fivefold cross-validation was used to evaluate each model for AUC, log score, and
briers log metrics using methods developed by Broms, Hooten, and Fitzpatrick (2016)
and fit to a single-species model [44]. AUC is a rank-based rule that gives high scores to
probabilities of occurrences and lower scores to absences, similar to the Maxent model
except that in this case, our absences are explicit as to locations and days there were no
camera trap photos. The survey locations were subset into 40% training and 60% testing
subsets for each of the five folds. The final scores were averages of the five folds.

3. Results
3.1. Maxent

For male tigers, the best performing model had a test AUC of 0.67 and included
two variables: prey abundance, which was positively associated with male presence and
contributed 70% to Maxent’s suitability prediction; and distance to water, which was
negatively related to male presence, and contributed 30%. The inclusion of distance to
human settlements or any combination of vegetation variables did not improve model
performance. This AUC value (0.67), as well as the limited number of influential predictors,
suggests male tigers are more widespread within our study area and affirms that male
tigers have a more generalized use of habitat [24].

The characterization of male tigers as generalists was also reflected in Maxent’s
relatively flat suitability surface (Figure 2), with values that ranged from 0.09 to 0.86 (on
a scale from 0 to 1). Only about 8% of the study area (115 km2) fell into the least suitable
class (0–0.3; [45]). Moderately suitable (0.3–0.6) habitats accounted for 85% of the study
area (1194 km2), while the suitable (0.6–0.8) and highly suitable (0.8–1) classes accounted
for 7% and less than 1% of the study area (100 km2, and 1.45 km2), respectively (Table 3).
Areas of highest suitability were concentrated in the lowland floodplains, while moderate
suitability areas extended to most of the Churia Hills, surrounding small areas of least
suitable habitat (Figure 2).
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Table 3. Percentage and area of suitability classes predicted for each modelled group.

Models Habitat Suitability 0.0–0.3 0.3–0.6 0.6–0.8 0.8–1.0

Female
% of study area 28.1 65.4 5.9 0.5

Total area (km2) 396.5 921.8 83.3 7.5

Male
% of study area 8.1 84.7 7.0 0.1

Total area (km2) 114.6 1193.6 99.6 1.5

Sex-Indiscriminate
% of study area 31.9 61.4 6.0 0.6

Total area (km2) 449.6 865.6 85.6 8.4

For female tigers, the best performing model had a test AUC of 0.71 and included prey
abundance, percent cover of Sal forest, distance to water, and distance to human settlements.
The two most influential variables were prey abundance (positively associated) and percent
cover of Sal forest (negatively associated), and contributed 35% and 31%, respectively,
to Maxent’s suitability prediction. Distance to water and distance to human settlements
contributed 17% to the model and were negatively associated with female presence. The
larger constellation of factors influencing female tiger presence together with the higher
AUC values contrasts with our findings for male tigers and supports the hypothesis that
female tigers have a more restricted range of suitable habitat [46].

This female distribution showed significant differences from our male model (Figure 2).
The suitability scores varied from 0.03 to 0.94, 15% greater than males. Most suitable habi-
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tats (with suitability scores between 0.3 and 1) for female tigers were also ideal for males,
while habitats only suitable for female tigers were rare and hard to capture (Figure 3).
Areas of suitable habitat were centered on the same floodplain locations, but included sig-
nificantly less area in the Churia Hills (Figure 3). The lowest suitability class covered nearly
28% of the study area (396.5 km2). The most highly suitable areas (0.8–1) had higher scores
and were more extensive in area, at 7.5 km2 (compared to 1.5 km2 for males). Moderately
suitable and suitable habitats covered 65.4% and 5.9% of the study area (921.8 km2 and
83.3 km2), respectively (Table 3; Figure 2).
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Figure 3. Binary suitable habitat map for tigers in our study area (with suitability between 0.3 and 1).

Our best performing sex-indiscriminate model had a test AUC of 0.69. Prey abundance
proved to be the most critical variable, contributing 43% to the prediction. Overall, this
model was similar to our female model, with percent cover of Sal forest contributing 27%,
distance to human settlements 24%, and distance to water 6%. Other than prey availability,
all predictors were negatively associated with suitability.

3.2. Occupancy

The tiger occupancy model estimates 80% occupancy for the Chitwan National Park
area, with males occupying 50% and females 41% of the sampled area. The map estimates
reveal a slightly more restricted area which the female tigers inhabit (see Figure 4).

The male, female, and sex-indiscriminant model coefficients show that the only land-
scape covariate with a consistently positive response between models was higher prey
density (Table 4). All models showed a negative coefficient for urban proximity and per-
cent Sal forest. The sex-indiscriminate models show that tigers prefer closer proximity to
water within riverine areas, higher prey densities, areas closer to settlements, and a low
percentage of Sal forest areas. Males had a positive coefficient for preferring riverine areas
compared to females.

Table 4. Occupancy model coefficients for the landscape variables.

Female Male Sex-Indiscriminate

Urban −0.336 −0.900 −0.760

Sal Forest −0.175 −1.594 −1.087

River −0.023 0.480 0.221

Distance to Water −0.130 −0.213 0.015

Prey Density 1.588 0.949 1.572
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Figure 4. Bayesian occupancy continuous habitat suitability maps generated by sex-specific models.

The model evaluation results from the occupancy modeling were similar to the Maxent
model. The female model performed the best, with AUC 0.75, followed by the model for
the males with AUC 0.69 and finally the full model with AUC 0.63; the log and Briers log
showed similar fitting metrics (Table 5).

Table 5. Model evaluation metrics for the Bayesian occupancy model, including log score, AUC, and
Briers log for each of the three models (female, male, and full).

Log Score AUC Briers Log

Female 229.72 0.75 17.33

Male 307.35 0.69 24.28

Sex-Indiscriminate 482.03 0.63 47.64

4. Discussion

As range contraction and population declines continue, the need for robust suitability
models for tigers intensifies. Our sex-specific habitat models provided critical information
that the sex-indiscriminate model did not. CNP floodplains included prime habitats for
both males and females; for females, habitat suitability was primarily restricted to this area
and was significantly higher than that for males. Additionally, while male distribution was
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driven solely by prey and water availability, females exhibited an aversion to Sal forest and
human settlements for a set of potential reasons to be discussed later.

Differences in the geographic distribution of suitable habitats between sexes are likely
the result of different reproductive strategies. Males do not aid in rearing or provisioning
young, and so are less restricted to those areas with the highest concentrations of prey and
water. Instead, they can cover a more extensive territory in search of mates and resources.
Females, however, must stay near their young to feed and protect them. Consequently,
female home ranges prefer those areas with the highest prey densities and most abundant
water supplies, found primarily in the floodplain zone.

Additionally, unlike males, whose home ranges overlap those of several females,
female home ranges are smaller and generally do not overlap with other females. This
difference in mobility between the sexes is evident in our data when the number of in-
dividual males identified in our study, 16, is compared to the total number of differ-
ent locations recorded, 57. In contrast, the 41 female individuals were recorded at only
69 different locations.

Our sex-specific Maxent models also highlighted the aversion of female tigers to Sal
forests, where there is sparse understory vegetation. These results suggest a female’s
preference for vegetation with a dense understory, such as grassland and riverine forest.
Studies recording females giving birth in tall grass, thick brush, under fallen trees, or
beneath rocks [30] show that females may be avoiding Sal forest due to its inability to
conceal vulnerable cubs, which remain in these locations for up to a month. Afterward,
they frequently move between such sites throughout the female’s home range. As the sole
caretakers of offspring, such areas are critical for female tigers. Our male Maxent model
showed no such preference regarding vegetation type, although the male occupancy model
showed a strong preference for avoiding Sal forests.

Importantly, our models also showed differences among male and female tigers
toward areas closer to human settlements, that male tigers appear less averse to human
disturbance. While the mutual attraction of tigers and humans to the floodplain area of
CNP may account for a portion of this effect, earlier studies [26,47] suggest that current
rates of grass burning and cutting and the occasional grazing of livestock may produce
habitats that attract large ungulates, thereby increasing prey abundance. Furthermore,
livestock depredation by tigers is well documented within CNP and similar areas, where
tiger habitat borders agricultural settlements [20,48,49]. In Bardia National Park, Nepal,
Bhattarai (2014) found tigers responsible for a total mean loss of livestock within adjacent
communities of 0.75 head per household per year.

Although the model outputs suggested that female tigers show specific aversions to
human settlements, this aversion is not uniform, as the suitability habitat map indicates
that much of the community forest close to the boundaries overlaps with female tiger
habitats (Figure 3). This study identified several critical concerns for tiger conservation
at the socio-ecological interface. For example, though tigers breed year-round, breeding
is most frequent between November and April, and efforts to shift potentially disruptive
practices such as grass-cutting and fuelwood collection could avoid critical female habitat
during times of the year when young cubs are most vulnerable, roughly 100 days after
breeding [30]. Anti-poaching measures designed to protect prey species can also be focused
on these areas, as prey depletion reduces carrying capacity for female tigers as well as
cub survivorship [50]. Studies suggest such measures may also help address a significant
source of human–tiger conflict: livestock depredation, which is significantly lower than
average in areas with higher natural prey abundance [48] a trend that is positively related
to national park frontage [49].

Though no consensus has been reached on the use of AUC as a performance measure
for habitat suitability models, they are typically evaluated as ’good’ if AUC is more signifi-
cant than 0.7 [38]. While all our models provided statistically significant predictive power,
only our female Maxent and occupancy model had a test AUC above 0.7. When a species
is more widespread and the study area is small, well-predicted absences are minimized,
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resulting in lower AUC scores [36,38,39]. As our study area encompasses areas where tigers
exist at some of the world’s highest densities, the three Maxent modeled populations are
considered widespread. Evidence of this effect can be seen most clearly in our male-only
model, which found that suitable habitat was more widespread and occurred in a more
heterogeneous environmental background than for females.

Imperfect detection of a species can also negatively affect the performance of habitat
models. Suitability estimates may be biased if the locations of presences and absences
result from detecting a species rather than habitat suitability. Our results also highlighted
the importance of model selection by comparing Maxent and occupancy models, as the
models yielded different predictions on the landscape. After including imperfect detection
into our model estimates, we find a much broader classification for tigers throughout the
park than Maxent, showing the most restricted range in the female population. The ability
of occupancy models to fit the data was similar to Maxent in our case, showing similar
AUC scores, indicating the models fit marginally. Because Maxent models presence data
only while ignoring absences [35], it addresses this bias to some degree. Rota et al. (2011)
concluded that occupancy modeling, which accounts for detection probability, showed only
modest improvements in predictive performance over Maxent and that these improvements
declined as detection probability declined, suggesting that Maxent may indeed perform
well when detection probabilities are low. Furthermore, Lahoz-Monfort et al. (2014) suggest
that if detection probability is relatively constant throughout a study site, Maxent’s ability
to identify suitable habitats is not impaired [51].

Previous occupancy modeling defined sex-indiscriminate fine-scale habitat selection
of tigers in Chitwan National Park, mainly based on areas with a high prey, low slope,
and relatively close proximity to human settlements; although, mainly defining tiger use
habitat as a generalist [17]. The present study sought to extend this work to sex-specific
modeling to understand where priority areas may exist where the species may respond to
landscape covariates differentially between sexes, finding that males are much more likely
to prefer riverine areas.

Spatial capture-recapture has been used to identify areas of higher tiger density,
creating spatially explicit maps within the Chitwan National Park [26,52] and specifically
within the Churia Hills area of the park [18]. Our study complemented this research
by providing MaxEnt and Occupancy resource selection maps for males and females
independently. However, future studies may seek to quantify sex-specific tiger densities at a
fine-scale using models produced by previous studies that use the sex structure included for
the baseline encounter and the sigma space use parameters to garner improved estimates for
total density [53,54]. A study dedicated explicitly to sex-specific spatial capture-recapture
in the context of separately quantifying density for males and density for females on
the landscape would be an exciting application of these data in addition to adding sex
parameters to a sex-indiscriminate model if done thoroughly.

One relationship we could not explore in this study was the effect of roads on tiger
habitat selection [55]. Although research on tigers and other large felids has shown that dis-
tance to roads affects the movement and distribution of males and females differently [13],
previous research within CNP suggests their effects on habitat suitability to be minimal.
A visual inspection of tiger presence records across the study area shows that most oc-
currences for all modeled populations are in areas with denser road networks compared
to areas with fewer records of tiger presence. Despite excluding roads as a predictive
variable, there is evidence, both anecdotal and empirical, to suggest that their effect on tiger
presence may be minimal. However, for this study, comprehensive fine-scale road data
were unobtainable for several reasons: (1) no up-to-date GIS road data for the study area
were known to exist prior to the analysis; (2) due to the relatively low spatial resolution
of the imagery available (30 m) for the land cover classification, only the widest roads
within the study area were detectable during image classification; (3) the structure of the
vegetation throughout the study site obscured ground visibility (nearly 70% is covered
by closed-canopy forest), making manual digitizing of roads problematic; and (4) because
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road data are often a proxy for human/vehicular activity, and because many of the area’s
roads are vestiges of prior, now removed settlements within the park, whether or not a
road was still in use was impossible to determine. Carter et al., (2012) found that Chitwan’s
tigers, though warier near human settlement, nonetheless co-occurred at fine spatial scales
with levels of human and traffic activity several orders of magnitude higher than those
found in most other tiger-occupied landscapes. Their study showed that tigers shifted
their activities temporally to coincide with times when humans were less active, instead of
avoiding these areas entirely.

5. Conclusions

We have identified significant differences between male and female tiger habitat
selection by creating sex-specific habitat models. This finding has implications for other
carnivore species, which have suffered population extinctions in the past two centuries
due to high human population densities, intensive land use activities, (e.g., agriculture,
grazing and hunting), and subsequent loss and fragmentation of these habitats [7,8].
Underestimating human-induced habitat loss due to knowledge or analytical gaps can have
substantial conservation ramifications [7]. Our results corroborate this finding and suggest
that one way to reduce this risk is through sex-specific habitat modeling. Our models have
shown that female tigers restrict their distribution to a much smaller geographic area than
males, and prefer higher prey abundances.

Furthermore, suitable habitats for female tigers were confined almost entirely to the
CNP floodplain region and showed a strong aversion to the Sal forest. On the other hand,
males inhabited a much broader part of the study area and showed no preference for
or aversion to any vegetation type. Disregarding these sex-related differences in habitat
selection would yield an overly optimistic estimate of suitable habitat range for tigers,
especially female tigers.

These findings have important implications for future management regimes at CNP
and other tiger-occupied landscapes. Surprisingly, the occupancy model predicted that
tigers could potentially occupy 80% of the park. The full Maxent model was more similar
to the female model. Overall, identifying the areas most suitable for breeding females
allows for more effective coordination of potentially disruptive practices within CNP and
its buffer zone and better resource allocation dedicated to curtailing the illegal poaching of
tigers and their prey species.

These allocations are significant when people and wildlife compete for space and/or
resources, and managers should set up appropriate times and places where humans can
conduct some disruptive activities while minimizing their impact on large carnivores. For
instance, CNP allows a time window of three to five days when local villagers can go
into the CNP core zone for grass collection in limited areas, and different buffer zone
community forests open for a short period for grass, fuelwood, and fodder collection [56].
The time window and the locations of permitted disruptive activities can consider tiger
habitat selection needs more scientifically in order to minimize negative impacts on tigers
and alleviate human–tiger conflict.

Our research points to a need for extensive carnivore management to garner broader
biodiversity and the enormous social and economic benefits [8]. Like tigers, male and
female carnivores of other species may also have quite different habitat requirements and,
therefore, spatial distributions; ignoring or downplaying such differences may reduce or
lose conservation efficacy. Instead, it is crucially important to identify the set of ‘bottle-
necks’, limiting factors that determine females’ habitat selection, offering best-practice
guidelines for management purposes. All these efforts may operationalize the so-called
‘novel, bold, and deliberate actions’ [8] to protect the large carnivores that deliver irreplace-
able ecological function and services worldwide, contributing directly or indirectly to Goal
15 (life on land) of the United Nations’ 17 Sustainable Development Goals [57].
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