Chapter 8

What If Neighbors’ Neighborhoods Differ?
The Influence of Neighborhood Definitions
of Health Outcomes in Accra

Alex Zvoleff, Li An, Justin Stoler, and John R. Weeks

Neighborhood context is recognized as an important predictor of individual-level
behaviors and health outcomes (Pickett and Pearl 2001; Lee and Cubbin 2002;
Sampson 2003). Neighborhoods, however, are difficult to define both in theory and
in practice, and are often drawn to follow existing administrative boundaries or
sampling schemes, or must be set arbitrarily due to a lack of sufficient data. Given
the role of neighborhood context in influencing health outcomes, it is crucial that
the area of influence surrounding the unit of analysis (be it a person, household,
etc.) be properly defined. As already discussed in previous chapters, if we do not
identify neighborhoods correctly, we cannot properly evaluate neighborhood effects.
Defining neighborhoods is a challenge across the social sciences; investigations of
the role of neighborhood context in decision making and shaping of individual-
level outcomes are seen in public health, geography, demography, and sociology
with no consistent approach to identifying and evaluating neighborhood effects.
In this chapter, we outline several types of neighborhood definitions from the
literature, and then, using data from the Women’s Health Study of Accra, implement
a spatial model together with a simulation approach to examine how two alternative
neighborhood definitions affect modeling of individual-level health outcomes.
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To ground this work, we first discuss how neighborhoods have traditionally
been represented in the literature. Neighborhood context has been recognized as
an important component of models of many demographic and health indicators
(e.g. fertility, morbidity, mortality), and is often accounted for by using multi-level
models that account for hierarchically structured study designs (Subramanian 2010).
Neighborhood effects represent the portion of the variance in an outcome variable
that is attributable to individuals’ shared experience as residents of a single area.
Neighborhood effects account for common exposure to institutions, social networks,
environments, etc. A key decision to be made in structuring models that account for
neighborhood effects is the definition of neighborhoods. To ground our study, we
briefly review several approaches to defining neighborhoods that have been used in
the social science literature.

We distinguish between two major types of neighborhood definitions: a territorial
definition and an egocentric definition. In a territorial definition, an individual
belongs to a shared neighborhood based on a higher-level variable (such as admin-
istrative boundaries), or some other defining characteristic (local tradition, spatial
homogeneity, etc.). A territorial neighborhood is shared by a set of individuals, all
of whom reside within the same spatially contiguous neighborhood. By contrast, in
an egocentric definition each individual is assigned to a unique neighborhood based
on his or her location in space and, as implemented here, a fixed radius around
that point. As noted in Chap. 3, both the scale and shape of neighborhoods can
have important effects on modeling of health outcomes. It is important that analysts
make informed choices regarding the tradeoffs between alternative approaches to
parameterizing neighborhood effects.

One alternative to administrative boundary-defined neighborhoods is to construct
divisions of space based on other criteria, such as social connections and the likely
spatial background area inhabited by each individual. “Vernacular” neighborhoods
(a territorial type of neighborhood definition) are perhaps the most intuitive
approach. Vernacular neighborhoods are defined using local knowledge to construct
a set of neighborhoods based on residents’ commonly accepted divisions of an area,
and are closest to the colloquial definition of neighborhood. Local residents might
use a vernacular neighborhood name to, for example, direct a taxi to a particular
area of a city (Weeks et al. 2010).

Vernacular neighborhood definitions are advantageous compared to exogenous
constructions like census tract boundaries because they capture social dimensions
not often considered in the design of survey sampling frames. As described in
Chap. 2, vernacular neighborhoods are often defined based on a combination of
census data, in-depth field work, and focus group research, which allows researchers
to understand how residents define core and boundary regions of their neighbor-
hoods. Once the boundaries are defined, if the sampling units of a relevant social
survey data set are available at a finer scale than the final vernacular neighborhoods,
construction of a spatial vernacular neighborhood-linked data set (including any
number of other sources of spatial data) becomes a matter of agglomeration of
survey units into the proper sets. When neighborhood boundaries and sampling
unit boundaries do not coincide, as is often the case, vernacular neighborhood
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boundaries must be approximated, either by using the judgment of researchers to
merge them into the most appropriate units, or by disaggregating them to a finer
scale so that they can be appropriately recombined.

Another technique of constructing territorial neighborhoods is to use an “or-
ganic” approach. This method has been successfully used in Accra as a basis
for mapping units determining contextual influences on processes including mar-
riage timing and fertility (Weeks et al. 2010). Organic neighborhoods enjoy the
advantage of having well-defined (by design) statistical properties. The AMOEBA
(A Multidirectional Optimum Ecotope-Based Algorithm) approach works by using
a local spatial autocorrelation statistic to define clusters of related spatial units
using an iterative process (Aldstadt and Getis 2006). AMOEBA “let the data
speak for themselves” by arriving at a set of empirically defined neighborhoods
based on any characteristic chosen by the analyst (e.g. land cover, a demographic
indicator, or some composite index). The organic approach allows maximization
of the homogeneity of neighborhoods, while maximizing the heterogeneity between
neighborhoods (Weeks et al. 2010), thereby closely matching our informal definition
of a neighborhood as an area defined by its unique characteristics.

Whereas past approaches to neighborhood definition were limited to merging
or splitting of areal units (as applied to a survey sampling design, for example)
individual-level survey data are increasingly available in a geo-referenced format
that offers the ability to construct new measures of neighborhood context defined
at the individual or egocentric level. Individual-level measures of context allow us
the ability to use individual-level spatially explicit modeling strategies, in addition
to the more common multi-level modeling approach used to account for nested
survey data.

Egocentric definitions are one way of operationalizing this conception of an
individual-level measure of neighborhood effects (Reardon et al. 2008). Egocentric
neighborhoods allow an explicit examination of the effects of the scale of analysis on
measures of neighborhood effects. With an egocentric definition, alternative spatial
scales can be tested and examined, and theoretical conceptions of scale can be
compared to what is observed empirically (Lee et al. 2008). One limitation of the
egocentric approach, including our implementation here, is that, similar to territorial
approaches, it assumes that all areas of the egocentric neighborhood are equally
accessible and influential. This problem can be addressed to some extent using
inverse distance or other weighting schemes; however it can be difficult to define
resistance layers for physical neighborhood effects at multiple scales such as roads,
rivers, or compound walls.

One advantage of territorial neighborhood definitions over egocentric definitions
is that for some applications (such as planning interventions or designing survey
sampling schemes) broader-scale patterns are most important. One example is the
broad-scaled mapping of health trends, as might be done from remotely sensed
imagery (Weeks et al. 2007). As discussed in Chap. 4, in cases where geospatial
data are sparse, the ability to identify boundary polygons for neighborhoods using
remote sensing could be an important tool.
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To explore the impact of alternative neighborhood definitions on our ability
to predict individual-level health outcomes, we compare egocentric and territorial
definitions using a spatial regression model and simulation approach. We first use
spatial modeling to estimate neighborhood effects using each definition, and then
use the results of this model as input to a simulation model of three representative
areas of varying socioeconomic status in Accra, Ghana. This approach lets us take
advantage of the precise estimates of coefficient values and standard errors that can
be obtained with the spatial regression models, while also investigating the impact
of each neighborhood definition type on modeling of health outcomes through time.

In the simulation model, we vary neighborhood context over time and compare
how the egocentric versus territorial definitions predict the combined physical
functioning score from the SF-36 survey questions, using real survey data for
comparison. We hypothesize that egocentric definitions of neighborhood context
will better represent the influence of neighborhood context on health outcomes than
territorial definitions due to their ability to incorporate local neighborhood context
without suffering from boundary effects typical of territorial definitions.

8.1 Analysis Part 1: Spatial Regression Approach

To test our hypothesis, we use data from the Women’s Health Study of Accra
(WHSA). The WHSA is a community-based longitudinal study focusing on a
sample of women from the Accra Metropolitan Area (Hill et al. 2007). Initially,
200 enumeration areas (EAs, similar to census tracts) within Accra were randomly
selected with probability proportionate to size (number of people). After creating
a list of eligible women in these EAs, a sample of 3,200 women was drawn with
probabilities fixed by the age group of each woman, and the socioeconomic status
of her EA. See Hill et al. (2007) and Douptchevaet al. (2011) for details on the study
design. The WHSA was first conducted in 2003 (WHSA-I), and a second wave was
completed in 2008-2009 (WHSA-II).

Our outcome variable, physical functioning (PF) score, is a measure derived
from a series of questions borrowed from the Short Form-36 (SF-36) questionnaire
(Ware et al. 1994) administered during the WHSA. The SF-36 questionnaire is
a short survey designed to be easily administered while providing reliable and
consistent measures of general health. The SF-36 has proven to be a reliable means
of measuring health through self-reports, and has been administered in numerous
countries, in varying contexts. The SF-36 survey is equivalent to the RAND 36-Item
Health Survey, with the exception of some scoring differences that are not relevant
for calculation of the PF scores we discuss here (see Hays et al. 1993 for scoring
details).

The PF score is an individual measure based on a series of ten questions that
focus on the degree to which health limits a number of common physical activities
such as walking, bending, and climbing stairs. The three possible responses to each
question indicate the degree to which health limits an individual’s ability to engage
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in each activity: yes — limited a lot, yes — limited a little, and no — not limited at all.
Following the established methodology for calculating the PF score, the response
to each of the ten items was recoded to a 0—100 scale (100 = not limited at all,
50 = limited a little, 0 = limited a lot), and the mean response calculated (Hays et al.
1993; Ware et al. 1994). With the PF score, as with SF-36 and RAND summary
measures in general, a higher score indicates a better degree of health (meaning less
limitation on physical functioning in the case of the PF score).

We choose the PF score for our study because previous work has shown physical
functioning to be, of the eight SF-36 scales, the most highly correlated with physical
health. A physical health summary measure (also taking into account bodily pain,
general health, and limitations in work and daily activities) can also be derived from
the SF-36 (Ware et al. 1994). For clarity of presentation and interpretation, we use
the physical function score, which focuses on a more limited subset of the SF-36
questionnaire, for this study.

We use the percent of vegetated land cover (derived from high-resolution satellite
imagery) as the measure of neighborhood context in our models. Vegetative land
cover has been linked to neighborhood structure in Accra (Weeks et al. 2007; Stoler
et al. 2012). Areas with a high percentage of vegetative cover tend to be city parks,
higher income areas, or areas neighboring forests. Areas with low vegetative cover
tend to be heavily built up areas, such as large industry or low income residential
areas. At a fine scale, less vegetative cover can also be due to the influence of
large roads. The lack of vegetation in low-income residential areas allows us to
use vegetative cover as a proxy for neighborhood effects on PF score. We would
expect to find lower PF scores in lower income areas (with less vegetative cover),
due to reduced access to health services, poorer sanitation facilities, and increased
likelihood of exposure to environmental hazards.

To map vegetative cover, we use two QuickBird multispectral images from
April 2002 and January 2010 (2.4 m spatial resolution). Following radiometric
correction from digital numbers to spectral radiance, the images were atmospher-
ically corrected using the empirical line method, clouds were masked, and a
vegetation/non-vegetation map was produced using NDVI thresholds. The final
product offers a 2.4 m resolution map of vegetative cover for the Accra Metropolitan
Area, as described in Chap. 4.

We define our neighborhood effects measure for two neighborhood definitions
(territorial and egocentric). For our territorial neighborhoods, we calculate percent
vegetative cover within “Field Modified Vernacular neighborhoods” (FMVs) that
have been previously defined for Accra. The FMVs were constructed by modifying
a map from the Ghana Statistical Service, following extensive fieldwork and focus
group interviews, to create a set of 108 FM Vs (see Weeks et al. 2012; Engstrom et al.
2011; and Chap. 2). For comparison with the territorial FMV approach, we use an
egocentric approach where we calculate the percent of vegetative cover within a
circular buffer of each woman’s household (obtained via GPS during the WHSA-
II survey). Because our percent cover measure is derived from remote sensing
imagery, there are some missing values in the data (areas of cloud cover, or where
a portion of a woman’s egocentric neighborhood extends off the image). In some
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cases, a large portion of the land area surrounding a woman’s location is unobserved
in our imagery; this occurs for women whose location is obscured by clouds in the
image, and for women located near the edge of the study site. To correct for this
problem, we calculate the percent cover of each egocentric neighborhood using the
total observed neighborhood area in the denominator, rather than total neighborhood
area (as would normally be done for a percentage calculation). This presumes
that unobserved areas of a particular egocentric neighborhood have the same
average land cover composition as the observed area of that same neighborhood.
To minimize bias from incomplete observations, we drop from our analysis all
women where data are missing for more than 25 % of the land cover pixels in
their egocentric neighborhood. This yields a final sample size of 1,114 women from
WHSA-I, and 2,279 women from WHSA-II.

To determine the size (radius) of the egocentric neighborhood for our models, we
examine the relationship between the egocentric variable (log percent vegetation)
and PF score at a range of radii. We find that the relationship levels off with
increasing radius (remembering that the area of each egocentric neighborhood
increases with the square of the radius). Around about 700 m radius, the correlation
coefficient between percent vegetation and PF score levels off at approximately 0.05
and is statistically significant (p < 0.05). We therefore chose to use a 700 m radius
for our models. Though it is possible we would see changes beyond a 1,000 m
radius, it is unlikely that the results for these egocentric neighborhoods would differ
from those for the FM'V neighborhoods we present here (unless constructed with far
larger radii than we would consider reasonable, in which case we would expect the
correlation to converge to zero).

We present two regression models to compare two neighborhood contexts (FMV
and egocentric). In both cases, the metric is the log of percent vegetative cover.
We use the log transformation of percent cover to improve the distribution of the
otherwise highly positively skewed data. The log transformation also conforms to
our expectation, and findings from other studies, such as Yabiku (2006), that the
difference between neighborhoods with low levels of vegetative cover (e.g., 20 %
compared to 10 %) is likely to have more of an impact on an individual than the
difference at high levels (e.g., between 90 and 80 %). Even though the absolute
change is the same, a change from 20 to 10 % is likely to be more noticeable to an
individual, as it represents a halving of the vegetative cover in a neighborhood.

We first experimented with using ordinary least squares (OLS) regression models
for our models of PF scores. However, given the nature of our data, we expected
that spatial autocorrelation might make an OLS approach inappropriate. Spatial
autocorrelation may exist in the residuals due to the presence of unobserved
covariates (indicating a spatial error model might be appropriate), or due to spatial
dependence in the dependent variable itself (suggesting a spatial lag model), or due
to both simultaneously (Anselin and Lozano-Garcia 2009; Getis 2009). Lagrange
multiplier (LM) tests (Anselin and Rey 1991) were used to test for spatial effects
in the residuals of the ordinary least-squares (OLS) representations of both the
egocentric and FMV models presented in Table 9.1. In both cases, the LM tests
indicated statistically significant spatial lag effects.
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Failure to account for spatial autocorrelation can lead to bias and inefficient
estimates of regression coefficients (Getis 2009). To account for this spatial
autocorrelation, we use a spatial simultaneous autoregressive lag model. In addition
to the usual data matrix (X), coefficient matrix (f), and error term (&) of an ordinary
least-squares (OLS) regression, spatial lag models include an additional term with
spatially lagged values of the dependent variable (y), weighted according to a
weights matrix (W) and autoregressive lag coefficient (p) (LeSage and Pace 2009).
This results in the model formula:

y=pWy+ XB+¢€

In our models, we define the spatial weights matrix as including as neighbors
all surveyed households within 700 m of each individual, using inverse distance
weighting. The inverse distance weighting reflects our expectation that neighboring
households will be more closely related to each other than to distant households.
All the models we present here were calculated in R version 2.14.2 (R Devel-
opment Core Team 2012) using version 0.5-45 of the ‘spdep’ package (Bivand
2012). A multilevel model is another potential approach, particularly for the FMV
neighborhood model; we use a spatial lag model for both models to simplify inter-
comparisons. The inclusion of spatial effects within a multilevel model is an active
research area (Corrado and Fingleton 2011).

The results of the two spatial regressions testing the influence of the two different
parameterizations of neighborhood-level percent vegetative cover on predicting
PF scores are in Table 8.1. Both models include the same controls; however,
the egocentric model includes a measure of percent vegetative cover calculated
over a 700 m egocentric neighborhood, while the FMV model uses a measure of
vegetative cover calculated over a territorial neighborhood. For both models, the
LM test p-values indicate no significant spatial autocorrelation in the residuals due
to spatial lag.

The coefficients for age and age-squared are both highly significant, and in the
expected directions in both models. While the linear term on age indicates higher
PF scores with increasing age, this effect is attenuated by the negative coefficient on
the quadratic term. The Ga are associated with higher PF scores than all other ethnic
groups (although the only marginally significant effect is between the Ga and Akan,
p <0.10). As expected, education is positively associated with PF, with greater PF
scores as the level of education increases (p < 0.05 for all the terms except for the
difference between the no-schooling and primary schooling-only groups).

The relationship between the use of charcoal in cooking and PF score is not clear;
the effect is surprisingly positive, although with a large standard error. We would
expect charcoal usage to be negatively associated with PF scores, as charcoal usage
was intended to act as a proxy for lower income households, who likely have less
access to health services. Furthermore, there are direct effects of charcoal on health,
which makes the positive coefficient surprising, though not significant. Ownership
of a toilet, an indicator of higher socioeconomic status, and possibly of less exposure
to environmental health hazards, is also unexpectedly negatively associated with PF
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score (insignificant in the egocentric model, p < 0.10 level in FMV model). The time
of residence in the area is significant only for the coefficient for residents who have
lived in their home for more than 30 years (who have significantly lower PF scores
than those who have been resident for 5 years or less).

The log percent vegetation term is highly significant for the FMV model
(p =0.007), and marginally so for the egocentric model (p =0.055). The term is
positive in both models as expected: areas with higher vegetative cover tend to
be of higher socio-economic status. Residents in lower socioeconomic status and
industrial areas are expected to have higher exposure to environmental stressors,
and to have worse access to sanitation and health services (see Chap. 7), thereby
resulting in lower PF scores. The size of the neighborhood effect increases and is
more significant with the FMV term than with the egocentric term, although the
standard errors for the parameters overlap. Judging by log likelihood and by AIC,
the FMV model provides a better fit to the data.

8.2 Analysis Part 2: Spatial Simulation Approach

With the completed spatial regressions, we explore how an egocentric approach
and territorial approach compare in predicting PF scores over time using a sim-
ulation approach. The results of the spatial regression models are used to predict
the physical functioning scores for a sample of WHSA respondents from three
representative areas of Accra. Agent-based (or individual-based) models have seen
increasing usage in the geographic literature for modeling individual-level decisions
and interactions in non-linear systems (Epstein 1999; Axtell et al. 2002; Parker
et al. 2003; Grimm et al. 2005; An et al. 2005). Agent-based simulation models
are advantageous for study of these systems as they can offer a sort of laboratory
in which alternative hypotheses can be tested. Here we use a simple simulation
approach to model physical functioning scores of a set of women from each of three
different neighborhoods, using data from the WHSA-I to test a series of regression
models derived from the WHSA-II surveys. The simulation modeling framework
has the advantage of allowing us to test, over time, how the two alternative
neighborhood definitions compare in their ability to model neighborhood contextual
influences on health outcomes. While the spatial regression approach allows us to
estimate effect sizes and significance, it is difficult to visualize the implications
of these findings on a broader scale. By using simulation modeling together with
spatial regression, we leverage the advantages of each of these two spatial modeling
approaches, to more fully test our hypothesis that egocentric neighborhoods will
serve as better indicators of neighborhood contextual effects than will territorial
definitions.

We chose three FMV neighborhoods for this analysis: Nima, North Kaneshie,
and Dansoman Estates (see Table 8.2 and Fig. 8.1). Nima is a well-known and
densely populated neighborhood of low socio-economic status. North Kaneshie,
located north-west of Nima, represents a middle-income area with slightly lower
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Table 8.2 Comparison of characteristics of the three neighborhoods (using data from the
WHSA-II)

Neighborhood Mean PF score  Mean SES  Mean education Mean age n

Nima 83.96 1.46 2.27 45.59 74
North Kaneshie 79.68 2.95 3.00 48.86 45
Dansoman Estate  82.26 3.87 3.47 45.50 51

Note: The sample size (n) listed here is the sample size for the total number of women in
that neighborhood from the WHSA-II survey. The ABM sample is smaller (see text)

Field Modified Vernacular Neighborhoods (FMVs) I
I FMV in Simulation Model
Other FMV

Dansoman
Estate

Km W—‘FE
50 1.25 25 5 7.5

s

Fig. 8.1 The three representative areas of the Accra metropolitan area included in the simulation
model. The three areas coincide with field-modified vernacular (FMV) neighborhoods

PF scores on average than Nima or Dansoman Estates, slightly older residents on
average, and moderate educational levels. Dansoman Estates is a higher income area
with higher education levels but with PF scores and mean ages similar to Nima. For
the simulation model, we use sets of residents from each of the three areas who lived
in the same location during both the WHSA-I and WHSA-II surveys. By using these
three areas for comparison, we are able to focus in detail on the processes occurring
at a neighborhood level. In addition, since the enumeration areas sampled during
the WHSA are not spatially contiguous, our analysis of each of these three areas
independently also simplifies interpretation of our simulation modeling results.

To run the simulation model, we need to model the change in neighborhood
context over time. In the simple case presented here, we model land cover change to
predict the percent of vegetated land cover in each neighborhood at each time step.
There are many models of land cover change of varying complexity in the literature
(Brown et al. 2000; Lambin et al. 2001; Petit et al. 2001; An et al. 2006; Millington
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Table 8.3 Markov transition
matrices for the three Nima
clusters (rows are from 2002

Non-vegetation ~ Vegetation

Nima cluster

image, columns are from Non-vegetation ~ 0.9931 0.0069
2010 image) Vegetation 0.0069 0.9931
North Kaneshie cluster
Non-vegetation  0.9868 0.0132
Vegetation 0.0244 0.9756
Dansoman Estates cluster
Non-vegetation  0.985 0.015
Vegetation 0.0244 0.9756

etal. 2007; An and Brown 2008). As our primary concern is to understand the effects
of alternative neighborhood definitions on models of physical functioning rather
than to model the generative process behind land-cover change in Accra per se,
we choose a series of simple first-order stationary Markov models of land-cover
change as inputs to our simulation model. We generate one Markov model for each
of the three representative areas we consider, using the two classes vegetation and
non-vegetation.

A Markov model is a simple model of land change that represents change using
a matrix of transition probabilities. Markov models rely on the assumption that
land-cover change can be represented as a stochastic process in which the probable
future state of a system can be derived based on knowledge of prior states of the
system. Using a transition matrix, a Markov chain can be constructed, representing
transition of the landscape between a series of states, with each state dependent
on only the transition probabilities, and the last observed (or modeled) state of the
system (Brown et al. 2000; Petit et al. 2001).

As we have only two observations (2002 and 2010), we assume a constant rate
of change in each neighborhood in the 8-year period between the two images. In a
typical Markov model, the probability of transition between states is calculated by
considering the probability of transition at a pixel level, by considering the initial
and final states of each pixel. However, due to misregistration and misclassification,
comparison of two images at the pixel-level can lead to high levels of error,
and inaccurate transition probabilities. To alleviate this problem, we calculate the
transition probabilities used in the model over a five-by-five pixel moving window
(Brown et al. 2000). After calculating the transition probabilities using the land
cover map from the 2002 and 2010 QuickBird images, we use matrix algebra to
correct the transition probabilities (derived from an 8-year window) to apply to the
1-year time step on which we run the model (Petit et al. 2001). After this calculation,
we obtain the final transition matrices (Table 8.3).

Though we would prefer to parameterize our simulation model using regressions
from the WHSA-I dataset, GPS coordinates were not collected for WHSA-I
respondents, so we are unable to accurately calculate egocentric neighborhoods for
these women. Using the WHSA-II dataset to parameterize our simulation model
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is, in a sense, cheating, as we are using future data to parameterize a model that
is then run starting in the past. As we do have GPS coordinates for women from
WHSA-II, we attempted to run our regressions on the WHSA-I panel, by only using
women known to have resided in the same location in WHSA-II and I (so that
we have precise location data for egocentric neighborhood calculation, by using
matched coordinates from the 2008 WHSA-II survey). This restriction drastically
reduces the sample size, limiting our ability to obtain unbiased estimates from
the data. Therefore, we use WHSA-II data to parameterize our models, and run
the simulations starting in the year 2003, assigning characteristics to the women
in the simulation directly from the WHSA-I data. For the simulation models, we
only use women surveyed in both WHSA-I and II. This ensures we can compare the
predicted PF scores from 2008 from the simulation models with the observed scores
from the same women from the WHSA-II survey conducted in 2008.

We run the model using three different types of scenarios. The first scenario
includes no neighborhood effect (using the regression coefficients from a spatial lag
model without a neighborhood effects term, but with identical controls to the models
presented in Table 8.1). The second type of scenario uses the results of the egocentric
spatial lag model presented earlier, with percent land-cover calculated for each
woman at the beginning of each time step over a 700 m egocentric neighborhood.
The third type of scenario uses the FMV neighborhood definition, with percent land
cover calculated for each woman according to the FMV neighborhood in which she
resides. We integrate our Markov models of land cover change to provide the land
cover estimates needed in these models. For each of the three representative areas
(Nima, North Kaneshie, and Dansoman Estates), we calculate independent Markov
transition matrices, allowing the pace of land cover change to vary for each area.

For each scenario, the model runs on a 1-year time step. The model is initialized
with the set of WHSA women resident in the neighborhood during WHSA-I, and
land cover is assigned to the neighborhood as a grid of 2.4 m resolution cells (as
a binary vegetation/non-vegetation map) based on a 2003 QuickBird classification.
At the beginning of each time step, the PF score is predicted for each woman using
the appropriate model from Table 8.1, and the appropriate neighborhood definition
to calculate percent vegetative cover depending on whether it is an egocentric,
territorial (FMV) or a no-neighborhood-effects scenario. Land cover change is then
modeled using the appropriate Markov transition matrix for the neighborhood, and
the resulting land cover is carried forward to the next time step. At the end of each
time step, the age and length of time at her residence are incremented for each
woman.

For each of the three test areas (Nima, North Kaneshie, and Dansoman Estates),
we run each of the three types of scenarios, resulting in a total of nine different
simulations. For each simulation, we ran 35 model runs, a sufficient number of
model runs to ensure a good estimate of the variance in the mean of the model
runs (the variance did not increase as we added additional runs). We present the
mean of these 35 model runs in our results to show the spread of variability that
manifests from the stochasticity in the land-change model. Given the low amount
of stochasticity in these simulations, the variance around these means is essentially
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invisible. This is not meant to overstate the accuracy of our predictions, but rather
to indicate a priori that the model runs, by design, do not have a high degree of
variability in their results within each of the nine different simulations.

We run each simulation for 17 time steps, representing the years 2003-2020.
The initial time step therefore coincides with the WHSA-I survey date, and the
sixth time step (2008) coincides with the WHSA-II survey date. Mortality is not
included in these models. We experimented with including age dependent mortality
in the model using World Health Organization (WHO) data; however, age-specific
mortality is not available with a high enough degree of temporal resolution for Accra
(WHO data are only available in three age groups: 0—15 years, 15-60 years, and
over 60 years old). Neglecting mortality is not an issue for the WHSA-I to WHSA-
II time interval (2003—-2008) that we focus on in this paper, as the women included
in the model represent real women who were surveyed and known to be alive in
both 2003 and 2008. We continue our model runs after 2008 not as a predictive
tool, but to descriptively compare the evolution of the PF scores as simulated on a
longer timescale. If we were focused on population dynamics or on making accurate
predictions of PF for these neighborhoods out to 2020, neglecting mortality would
not be defensible.

The simulation results for the three representative neighborhoods are presented in
Fig. 8.2. The most noticeable trend is the decline in PF scores over time. This trend
is due to the increasing age of the respondents in our cohort. As we restrict our
sample to include only women sampled in the same location in both the WHSA-
I and WHSA-II surveys, the average age of our sample is relatively high (around
48 years old at the beginning of the model). This is in part because younger, more
mobile women have been filtered out (as they would not be in the same household
twice). The decline in mean PF score can also be seen to increase with time; this is
due to the effect of the quadratic term on age.

We can also compare the three models across each scenario. In all three areas,
the mean PF score as modeled by the no neighborhood effects model, egocentric
model, and FMV (vernacular) neighborhoods models are all very similar. This
is due to the relatively small effect of neighborhood context (as determined by
the regression models) on PF score as compared to the size of the age effect.
The age effect dominates when we model PF scores through time. The FMV
model tends to predict higher PF scores than the egocentric model, due to the
influence of the larger intercept term in the FMV model. Through time, the FMV
neighborhood and egocentric neighborhood models track closely together, although
the no-neighborhood-effects model diverges slightly, most evidently in the North
Kaneshie simulation. Here we see the small, though visible, impact of ignoring
neighborhood effects in our model.

In Table 8.4 we compare the mean PF scores for each area as calculated by the
simulation models using the PF scores from the survey data. We see the closest
match between our model output and the observed data for the Nima and North
Kaneshie neighborhoods. In both cases the FMV neighborhood definition tracks a
bit more closely with the observed data. However, in North Kaneshie the observed
data (as seen in the left two columns of Table 8.4) shows an increase in the
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Fig. 8.2 The simulation results for (a) Nima, (b) North Kaneshie and (¢) Dansoman estates.
The vertical dotted line in each figure represents WHSA-II survey date
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Table 8.4 Comparison of the mean physical functioning (PF) score of the three
neighborhoods included in the simulation model, from the WHSA surveys and from the
model results

WHSA-II Modeled 2009  Modeled 2009
Neighborhood WHSA-I (2003)  (2008-2009) (Egocentric) (FMV)
Nima 95.94 91.89 90.92 91.99
North Kaneshie 89.53 92.78 91.07 91.43
Dansoman Estate  87.64 87.65 92.32 92.93

Note: Column 2 is the mean PF score from the WHSA-1 survey. Column 3 is the mean
PF score from the WHSA-2 survey. Column 4 is the mean PF score from 2009 from the
simulation, modeled using the egocentric neighborhood definition. Column 5 is the mean
PF score from 2009 from the simulation, modeled using the FMV neighborhood definition

mean PF score; our model greatly over-predicted the 2003 observed values and
produced a decrease in PF score up to 2008 that ended up matching the observed
data. Clearly the model requires fine-tuning if we were to seek to match the
process more closely in North Kaneshie. In Dansoman estates we see essentially
no change in the observed mean PF scores, but the simulation model again predicts
a decrease. Spatial heterogeneity in the observed relationship between PF score and
neighborhood context is a possibility that should be further explored.

8.3 Conclusions

Although we expected to derive more predictive power from the egocentric neigh-
borhood definition than from territorial measures, our results do not indicate
that the egocentric approach is superior to the territorial FMV definition. The
spatial regression models indicate that the size of the neighborhood effect from an
egocentric neighborhood is similar (though less) in magnitude to that measured from
a territorial neighborhood. To further compare the two neighborhood definitions and
explore their dynamics over time, we used a simulation modeling approach. Our
simulation results show a similar pattern. For the prediction of 2008 PF scores, the
territorial and egocentric neighborhood definitions both perform similarly, and on a
longer timescale, the results predicted under both definitions track closely together.
The egocentric metric applied here, percent of vegetated land cover within a given
distance buffer, is exceedingly simple. A more advanced approach that considered
texture measures from the imagery, as demonstrated in Chap. 5, might better account
for important neighborhood characteristics such as sharp boundaries between areas.
Our comparison of the observed data with our simulation model results suggests
that there may be spatial heterogeneities in the relationship between PF score and
neighborhood context. Future work to untangle this relationship would inform our
understanding of the relation between neighborhood context and health.

The egocentric neighborhood approach shows promise for estimating the relevant
scale to be used in modeling neighborhood effects on individual-level health,
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and more sophisticated techniques of measuring these neighborhoods may unlock
additional predictive power. Although we see similar effects between the egocentric
and territorial definitions for PF score as our outcome variable, the same may not
be true in general when other health outcomes are considered. An understanding
of the spatial process itself is essential to choosing the proper parameterization of
neighborhood context. When calculated as a continuously varying measure at the
individual level, egocentric neighborhood context measures may be a useful addition
to the analyst’s tool kit. With the ability to better control for spatial autocorrelation
in this type of modeling framework, the use of egocentric neighborhoods presents
a potential alternative to multilevel modeling techniques traditionally used for
exploring neighborhood effects.
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