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Abstract Humans have transformed much of Earth’s

land surface, giving rise to loss of biodiversity, climate

change, and a host of other environmental issues that are

affecting human and biophysical systems in unexpected

ways. To confront these problems, environmental manag-

ers must consider human and landscape systems in inte-

grated ways. This means making use of data obtained from

a broad range of methods (e.g., sensors, surveys), while

taking into account new findings from the social and bio-

physical science literatures. New integrative methods

(including data fusion, simulation modeling, and partici-

patory approaches) have emerged in recent years to address

these challenges, and to allow analysts to provide infor-

mation that links qualitative and quantitative elements for

policymakers. This paper brings attention to these emer-

gent tools while providing an overview of the tools cur-

rently in use for analysis of human–landscape interactions.

Analysts are now faced with a staggering array of

approaches in the human–landscape literature—in an

attempt to bring increased clarity to the field, we identify

the relative strengths of each tool, and provide guidance to

analysts on the areas to which each tool is best applied. We

discuss four broad categories of tools: statistical methods

(including survival analysis, multi-level modeling, and

Bayesian approaches), GIS and spatial analysis methods,

simulation approaches (including cellular automata, agent-

based modeling, and participatory modeling), and mixed-

method techniques (such as alternative futures modeling

and integrated assessment). For each tool, we offer an

example from the literature of its application in human–

landscape research. Among these tools, participatory

approaches are gaining prominence for analysts to make

the broadest possible array of information available to

researchers, environmental managers, and policymakers.

Further development of new approaches of data fusion and

integration across sites or disciplines pose an important

challenge for future work in integrating human and land-

scape components.

Keywords Coupled human–natural system � Spatial

analysis � Modeling � Human–environment dynamics �
Simulation

Introduction

Humans have transformed as much as half of the land’s

surface (Vitousek and others 1997), biodiversity loss con-

tinues at an alarming rate (Butchart and others 2010), and

climate change is negatively impacting human and bio-

physical systems (IPCC 2007). Research has increasingly

shown that human and environmental systems can behave

in unpredictable ways (Folke 2006; Liu and others 2007a;

Liu and others 2001; Werner and McNamara 2007).

Making management recommendations in light of these

findings require methods that can integrate a broad array of

data types from multiple sources. For example, it is not

unusual for a single study of human–landscape processes to

incorporate remote-sensing data from multiple sensors,

time series of ecological data collected from plots or
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transects, topographic data, hydrological data, information

on species distribution or habitat usage, and social infor-

mation from surveys and interviews. For each of these

types of data an extensive literature exists in relation to

analyzing that particular type of data in isolation. A chal-

lenging task for the researcher investigating human–land-

scape interactions is to reveal a coherent picture that takes

into account all of these sources of information. Environ-

mental managers also need this kind of integrated analysis.

This review is motivated by this need for ways to inte-

grate and present information in analysis of human–land-

scape systems. One difficulty faced by researchers is that

human–landscape interactions occur across a range of

temporal and spatial scales (characterizing the length of

time or spatial extent over which a process acts). Sociol-

ogists and social geographers have written on the influence

of social practices, technological development, and eco-

nomic structures on conceptions of space and time

(Hägerstrand 1966; Harvey 1990; Thrift 2001), and phys-

ical geographers have noted the range of spatial and tem-

poral scales across which landscape processes occur

(Kirchner and others 2001; Werner and McNamara 2007;

Wolman and Miller 1960). We will briefly discuss several

examples here; see Harden (this volume) for a more

detailed review of the literature on human–landscape

interactions. Taking human–climate interactions as an

example, weather variation on an hourly daily timescale

can lead to flooding and to drastic alteration of the land-

scape (*100 km spatial scale), leaving a lasting imprint on

society (NCVST 2009). Climate variation on longer inter-

annual and decadal to centennial timescales can impact

sensitive ecosystems (IPCC 2007) and agriculture (How-

den and others 2007), and potentially affect population

processes such as migration (Brown 2008) over a larger

spatial scale (*1,000 km). Similarly, human actions such

as land-use and land-cover change, and emission of

greenhouse gases can, in turn, feedback on climate

(regional-global spatial scale, IPCC 2007; Olson and others

2008). Human–landscape systems can, therefore, be char-

acterized at a range of levels within a spatial and temporal

hierarchy (Malanson 1999; Manson 2001; Werner and

McNamara 2007).

Research has also shown that human–landscape systems

can behave in unpredictable, nonlinear ways (Folke 2006;

Liu and others 2007a; Werner and McNamara 2007).

Environmental managers must, therefore, consider the

possibility of emergent ‘‘surprises’’—or unexpected results

following management interventions—due to complex

interactions within or among human–landscape systems

(Liu and others 2007a). For example, policies in a pro-

tected area might lead to an increase in habitat loss by

changing incentive structures such that local families desire

a smaller family size (Liu and others 2001).

Understanding these systems is a daunting challenge for

analysts. Researchers in the field come from a broad range

of disciplines (ecology, biology, the earth sciences, soci-

ology, geography, economics, etc.). Many successful

analyses use interdisciplinary approaches and a range of

methods to address research questions from a variety of

angles. Complexity theory is one common theoretical

approach used to understand human–landscape systems

(Arthur 1999; Axelrod and Cohen 2000; Crawford and

others 2005; Manson 2001). Complex systems are often

composed of a hierarchy of constituent elements (as in our

human–climate example above, Manson 2001; Werner and

McNamara 2007). The relationships between these com-

ponents (together with feedbacks and interactions occur-

ring across spatial and temporal scales) in part determine

the dynamics of complex systems. As stated by Manson,

‘‘A complex system is defined more by relationships than

by its constituent parts’’ (Manson 2001). In a human–

landscape system with relationships between many differ-

ent constituent parts at different levels in a scalar hierarchy

(individuals, households, neighborhoods, regions, states,

planners, developers, etc.), the effects of interactions

between agents are essential. These interactions can lead to

widely divergent outcomes depending on the ‘‘initial con-

ditions’’ in a system (the initial characteristics of each

constituent agent and the initial layout of the environment,

Brown and others 2005; Lorenz 1963; Manson 2001). The

focus in complexity theory on interactions between indi-

vidual constituents of a system is similar to the actor-net-

work theory (ANT) framework in sociology. ANT

‘‘extends the word actor—or actant—to non-human, non-

individual entities’’ (Latour 1996, original emphasis). ANT

considers the relationships and interconnections between

entities as essential in defining agency (or ‘‘the ability to

act’’ Aitken and Valentine 2006), with agency not restric-

ted to the human components of a system (Bosco 2006).

Drawing on these theoretical approaches, the vulnera-

bility analysis framework (Turner and others 2003) and the

coupled human and natural systems (CHANS) framework

(Liu and others 2007b) are two approaches that have come

to the fore in human–landscape analysis. Both advocate use

of an array of information and tools of analysis to connect

components or subsystems of human–landscape system

across scales. Analysts, therefore, need to have some

familiarity with the standard methods in other fields, in

addition to those of their own discipline. human–landscape

researchers have developed their own analysis tools (such

as simulation methods), but they still must connect with the

other literatures, particularly to coherently communicate

findings with policymakers. The objective of this review is

to provide an overview of the tools currently used in

human–landscape analysis, to give insight on the strengths

and weaknesses of each tool, and to provide guidance to
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analysts on where and how these tools are best applied.

Instead of discussing each method in detail, we aim to

provide readers with an understanding of the established

and developing methods in human–landscape analysis and,

for each method, to highlight an example of their appli-

cation in the literature. We also point toward other sources

for further, detailed review of specific methods.

Strategies and tools for analyzing human–landscape

systems are inherently difficult to categorize, given the

varied array of methods and data types analysts encounter.

To structure our review we focus on four key areas (see

Table 1): statistical methods (Sect. Statistical Methods),

GIS and spatial analysis methods (Sect. GIS and Spatial

Analysis Methods), simulation approaches (Sect. Simula-

tion Approaches), and mixed methods techniques (Sect.

Mixed Methods Techniques). We conclude with a discus-

sion of the remaining key challenges for integration in

human–landscape research (Sect. Conclusions).

Statistical Methods

Commonly used regression techniques (Sect. Regression

Techniques) remain important for human–landscape

research, but several less commonly applied techniques are

beginning to show influence in the field. Survival analysis

(Sect. Survival analysis) shows great promise as the num-

ber of longitudinal human–landscape datasets has begun to

increase. Data fusion methods (Sect. Bayesian Methods)

are only just beginning to appear in the human–landscape

literature, but these approaches promise to have greater

impact as they mature.

Regression Techniques

Regression techniques (ordinary least squares (OLS),

generalized linear models (GLMs), etc.) remain heavily

used for studying human–landscape systems, particularly

in the geographic (Serra and others 2008; Wandersee and

others 2012; Weeks and others 2010) and sociology and

demography (Axinn and Ghimire 2011; Lee and others

2008) literatures. Although regression approaches (when

compared to simulation methods, for example) are limited

in their ability to consider dynamics, and are less capable

of handling complexity (such as cross-scalar interactions),

and reciprocal causation, their relative ease of implemen-

tation, interpretation, and presentation make them attrac-

tive to many analysts. Not every study needs to make use

of more complex techniques like Bayesian data fusion

(BDF) (Sect. Bayesian Methods) or simulation modeling

(Sect. Simulation Approaches). Analysts seeking to esti-

mate relative effect sizes or to gauge initial empirical

support for a proposed human–landscape link (human

influence on habitat change for example) can make fruitful

use of relatively simple statistical methods. Even when

more complex techniques are used, regression approaches

remain valuable for model parameterization and validation

using empirical data (An 2012).

Multiple regression techniques are particularly useful

for establishing potential human–landscape relationships,

allowing analysts to compare the relative effects of a few

covariates of interest, while controlling within the model

for potential confounding factors. Examples of multiple

regressions can be found throughout the literature; we will

not discuss these basic methods in detail here. Multi-level

modeling, however, is a statistical framework that may be

less familiar to human–landscape researchers, but that has

much to offer for its ability to apportion the variance in the

data according to different hierarchical levels (Goldstein

1999).

In a hierarchically structured dataset (with observations

at the individual, household, and neighborhood levels, for

example), simple statistical techniques such as OLS would

be inefficient and could provide biased estimates of

regression coefficients due to correlations in the error terms

between observations from the same group (e.g., neigh-

borhood or household). If we are seeking to predict land-

use decisions from a set of individuals from a hierarchi-

cally structured study, we should not expect individuals

that share the same neighborhood to provide statistically

independent observations. Given their common exposure to

similar neighborhood characteristics (access to services,

economic opportunities, etc.) we would expect some cor-

relation in the actions or characteristics of a set of indi-

viduals from the same neighborhood. Multi-level

techniques allow for accounting for this covariance struc-

ture in the model (Gelman and Hill 2007; Goldstein 1999;

Jones 1991; Subramanian 2010), and have been applied

to many social and environmental datasets (Ghimire and

Axinn 2010; López-Carr and others 2012; Pan and

Table 1 Overview of integrative methods in human–landscape

research

Method Examples

Statistical methods Descriptive statistics, regression analysis,

multi-level modeling, survival analysis,

Bayesian data fusion

GIS and spatial

analysis methods

GIS analysis (overlay, buffering, spatial

joins, etc.), geographically weighted

regression (GWR), spatial regression

models, space–time analysis

Simulation

approaches

Cellular automata, agent-based modeling,

participatory modeling

Mixed methods Alternative futures modeling, integrated

assessment models
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Bilsborrow 2005; Weeks and others 2010; Yabiku 2006).

The inclusion of spatial effects within a multi-level model

is an active research area (Corrado and Fingleton 2011).

Example Application of Multi-variate Regression

One recent example of multi-variate regression in the

human–landscape literature comes from a study in the

Fanjingshan National Nature Reserve (FNNR) in China—a

reserve established to protect habitat for the endangered

Guizhou golden monkey (Rhinopithecus brelichi). Wan-

dersee and others (2012) use multi-variate logistic regres-

sion to explore the effect sizes, direction (positive or

negative), and significance of a number of variables in

determining people’s perceptions of their environmental

impact in the reserve. Using a simulation approach (Fig. 1),

they graphically illustrate the uncertainty in their estimate

of the effect size of the key predictor in their model

(observation of the golden monkey) on local individuals’

perception that they personally affect the environment.

Wandersee and others (2012) demonstrate the utility of

statistical approaches for testing hypothesized human–

landscape links in an easily communicated framework.

Survival Analysis

Survival analysis is particularly useful for investigating

time series data such as those that might arise from multi-

temporal remote-sensing images or longitudinal social

surveys. Survival analysis has traditionally been used in

engineering for time-to-failure studies (McPherson 2010;

Xie and Lai 1996), in medical sciences for investigating

survivorship following a treatment (Hosmer and others

2008; Klein and Moeschberger 2010; Selvin 2008), in the

demographic literature for hazard analysis (Barber and

others 2000; Reardon and others 2002), and in the opera-

tions research literature for applications such as credit

scoring or customer loyalty (Larivière and Van den Poel

2004; Oakes 1983; Stepanova and Thomas 2002). An and

Brown (2008) present a seminal framework in regard to its

potential strengths in land change science. Survival anal-

ysis is applicable when the time until occurrence of an

event, measured with varying degree of precision, is the

dependent variable of interest (Harrell 2001), and such

events are associated with variables that have changing

values over time (Allison 1995; An and Brown 2008).

Two key concepts of survival analysis are the survival

function (a general indicator of what proportion of units,

which might be individuals or land parcels, remain unchanged

over time) and the hazard function (hazards can be understood

as the risk of change that each unit of analysis is subject to over

time) (An and Brown 2008). Survival analysis can also neatly

handle data censoring (Harrell 2001), including situations in

which the event of interest is known to have happened before a

specific time (left censored), happened between two time

points (interval censored), or NOT happened until a specific

time (many times the end of the corresponding study time

frame; right censored). Censoring commonly arises with both

human and environmental data—whenever we have obser-

vations at discrete-time points rather than continuously, data

censoring occurs.

Using survival analysis, questions that can be addressed

include the impact of landscape change on human behaviors

such as migration (Henry and others 2004; Massey and others

2010), marriage timing (Yabiku 2006), or fertility (Ghimire

and Axinn 2010; Ghimire and Hoelter 2007). Researchers can

also use survival analysis to investigate landscape transitions

as a result of anthropogenic activities, treating individual land

parcels as the unit of analysis (An and others 2011; An and

Brown 2008). An and Brown (2008) used survival analysis in

conjunction with GIS modeling and remote-sensing data to

explore land-use change in southeastern Michigan, finding

that survival analysis is uniquely well-equipped to handle

temporal complexities, compared to traditional statistical

techniques.

Usage of survival analysis can present some complica-

tions. Changes in the unit of analysis over time (e.g.,

Fig. 1 Simulated uncertainty in regression coefficient (dark line and

shaded simulations from 1000 repetitions), from logistic regression

predicting perception of personal environmental impact based on

contact with the endangered Guizhou golden monkey. The corners of

the plot show the joint distribution of the two variables. Figure

reprinted from Ecological Modelling, 229, Wandersee, S. M., L. An,

D. López-Carr, and Y. Yang., Perception and decisions in modeling

coupled human and natural systems: A case study from Fanjingshan

National Nature Reserve, China, pages 37-49, Copyright 2012, with

permission from Elsevier
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changes in the size or shape of a parcel in land change

studies) can be a challenge. Also, correlations between

events at different time periods (e.g., accounting for

reduced supply of land in later time periods due to prior

development) are difficult to handle, though this problem is

no worse with survival analysis than with other statistical

methods (An and Brown 2008). For more on applying

survival analysis to human–landscape analysis, see Vance

and Geoghegan (2002), Irwin and Bockstael (2002), An

and Brown (2008), and An and others (2011). Generic

literature about the technique can be found in Allison

(1995), Harrell (2001), Hosmer and others (2008), or Klein

and Moeschberger (2010).

Example Application of Survival Analysis

The usefulness of the survival analysis framework in human–

landscape analysis is demonstrated by a study of exurban land

development in Southeast Michigan (An and others 2011). An

and others (2011) examine the role of geographic, biophysical,

and socioeconomic factors in determining the hazard of farm

parcel development into residential land, using a parcel level

dataset constructed from aerial photos taken approximately

every 10 years from the 1960s–2000s. The paper leverages

the ability of survival analysis to handle a parcel level dataset

with data censoring, while also considering competing risks

(farm parcels can be developed into different types of resi-

dential parcels). As seen in (Fig. 2), an advantage of survival

analysis compared to ordinary regression techniques is that

with survival analysis changes in hazards can be estimated

over time. An and others (2011) found that the hazard of

conversion of farm parcels to residential parcels varied over

time, and varied depending on the type of subdivision.

Bayesian Methods

Bayesian methods are increasingly prevalent in investiga-

tions of human–landscape systems. Bayesian methods

differ from the perhaps more familiar ‘‘frequentist’’

approaches to statistical analysis on which classical

approaches to hypothesis testing are based. One key dif-

ference between the two is that in frequentist approaches to

statistical inference, model parameters are treated as fixed

unknown quantities, whereas in a Bayesian approach,

model parameters are treated as unknown random variables

(Gelman and others 2003; Hobbs and Hilborn 2006). Using

a Bayesian approach, complicated model structures can be

represented, and the probabilities of competing hypotheses

can be compared (Hobbs and Hilborn 2006).

In both frequentist and Bayesian approaches, data (Y)

are treated as having come from a sampling distribution

f ðY jhÞ (read ‘‘a function of data Y given parameter h’’)

(Link and others 2002). The analyst can estimate the model

parameter(s) (h) based on the observed data (Y). In a

frequentist approach, h is treated as an unknown fixed

quantity, whereas in Bayesian analysis, h is treated as a

random variable with a corresponding distribution f ðhjYÞ
(referred to as the ‘‘posterior distribution’’) (Link and

others 2002). Using Bayes theorem, we can calculate the

posterior probability associated with the model parameters

conditional on the observed data, taking into account prior

knowledge we may have about the problem. For an intro-

duction to Bayesian techniques aimed at those already

familiar with frequentist statistics, see Hobbs and Hilborn

(2006); Gelman and others (2003) provide a more exten-

sive background on Bayesian statistics. Link and others

(2002) and Clark (2005) review applications of hierarchical

models, and Calder and others (2003) discuss the applica-

tion of Bayesian state-space methods in population

modeling.

A strength of Bayesian analysis is its ability to consider

directly the probability of alternative hypotheses (Gelman

and others 2003; Hobbs and Hilborn 2006). We can also

use a Bayesian framework for data fusion—the problem of

how to combine ‘‘different sources of information into a

single final result’’ (Fasbender and others 2008). BDF is a

developing field for integrating different types of data of

varying spatial and temporal resolutions. A simple example

will help to conceptualize the concept of data fusion:

suppose we are trying to merge a set of measurements

where multiple measurements, using different instruments,

Fig. 2 Hazard rates (calculated over a span of 50 years) for development

of farm parcels in southeastern Michigan into three different types of

subdivisions. Hazard can be understood as the instantaneous risk of

development of a parcel (An and others 2011; An and Brown 2008).

Figure reprinted from Journal of Land Use Science, 6 (1), An, L., D.

G. Brown, J. I. Nassauer, and B. Low., Variations in development of

exurban residential landscapes: Timing, location, and driving forces,

pages 13-32, Copyright 2011, with permission of the publisher (Taylor &

Francis Ltd, http://www.tandf.co.uk/journals)
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have been taken at the same location (for example, pan-

chromatic and multi-spectral sensors). Each sensor pro-

vides slightly different information on land cover, our

phenomena of interest. A BDF framework can handle this

case by including it in the definition of the posterior and the

prior conditional probability distributions. In this case we

would have the posterior distribution f ðzjys; ypÞ where ys

refers to the multi-spectral observations for a pixel, yp the

panchromatic, and z is our outcome variable (Bogaert and

Fasbender 2007; Fasbender and others 2008).

Although much work in data fusion has focused on military

applications, data fusion techniques are seen with increasing

frequency in the remote-sensing literature (see Zhang 2010,

for a recent review). BDF offers a probabilistic framework

within which multiple data sources, possibly at different

spectral, spatial, and/or temporal resolutions, can be neatly

handled (Bogaert and Fasbender 2007; Fasbender and others

2008; Mohammad-Djafari 2003). Solberg and others (1994)

presented an early approach to fusing Landsat TM and syn-

thetic aperture radar (ERS-1) imagery using a Bayesian

framework. Other recent work includes Bogaert and Fasb-

ender (2007) on spatial prediction, Urban and Keller (2010)

and Olson and others (2012) on climate data, and Peng and

others (2011) for a review of data fusion approaches in ecol-

ogy. Use of BDF in human–landscape research is still rare—

future research is needed on the most appropriate applications

of BDF in human–landscape studies, and on how BDF might

be integrated with other methods (e.g., with qualitative data or

to support development of simulation models).

Several software tools are capable of fitting Bayesian

models. WinBUGS (Lunn and others 2000) is readily

available online, as is its open-source and multi-platform

successor OpenBUGS (Lunn and others 2009). Both use

Markov Chain Monte Carlo (MCMC) methods. Open-

BUGS functionality can also be accessed from within the R

statistical computing environment using the ‘‘BRUGS’’

package (Thomas and others 2006). Although BDF is new

to the human–landscape literature, the promise of BDF is

great—we can expect to see growing usage of BDF and

other data fusion approaches in the future.

Example Application of BDF

There are few examples of BDF usage in the human–

landscape literature, but a remote-sensing study by Fasb-

ender and others (2008) shows the potential of BDF

approaches for fusing multiple data sources together, of

varying spatial resolutions. Fasbender and others (2008)

compare BDF with other approaches for pan-sharpening

IKONOS imagery, finding that the BDF method consis-

tently performs well compared to other methods. An

additional advantage they note is that the BDF framework

offers the analyst an opportunity to tune the fusion—

weighting alternative sources of information more heavily

than others if desired (Fasbender and others 2008).

GIS and Spatial Analysis Methods

Geographic Information Systems (GIS) can efficiently

handle spatial data of different types (raster, vector) and

from different spatial scales, and are widely used for

planning and analysis of human–landscape systems. Spatial

analysis can be useful in handling spatially explicit (often

spatially auto-correlated) data within a regression frame-

work (and sometimes within a GIS). First, we will discuss

GIS tools (Sect. GIS Tools). We will follow with an

introduction to the more analytic approaches for spatial

data (Sect. Spatial Analysis and Modelling).

GIS Tools

Geographic Information System (GIS) tools can be very

useful for data integration and manipulation. A GIS allows

the user to take advantage of spatial analysis tools like

overlaying, buffering, spatial joins, etc. to compare spatial

datasets. The major GIS tools (ArcGIS, IDRISI, Quantum

GIS, GRASS, etc.) all have these basic capabilities. More

advanced spatial analysis features are beginning to appear

in GIS packages—geographically weighted regression

(GWR) is available in the latest version of ArcGIS, and

Quantum GIS can be connected with the R statistical

computing environment.

An edited volume by Fox and others (2002) provides a

number of case studies of how to link social and environ-

mental datasets using GIS. A recent review by French

(2010) shows how GIS tools are being used in archeolog-

ical studies to understand past human–landscape dynamics,

by integrating point-observations and micro-level archeo-

logical studies into a broader scale, landscape view. Other

studies are utilizing GIS tools as a key part of multi-criteria

decision analysis (MCDA) frameworks (Berger 2006;

Girard and Toro 2007; Phua and Minowa 2005), to allow

inter-comparison of alternative scenarios and policies from

within an integrated spatial framework.

GIS tools can also be used for spatial analysis and

modeling (more in Sect. Spatial Analysis and Modelling)—

Mörtberg and others (2007) use GIS (ArcGIS and IDRISI)

to model habitat for a set of focal species under three

alternative development scenarios for the Stockholm,

Sweden region. Simple rule-based models can also be

implemented in GIS, using map algebra to combine layers

and datasets. Flood modeling is one example: Brown

(2006) use a GIS to implement a series of transition rules to
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model sea-level rise impacts in North Norfolk, UK, under a

number of different policy scenarios.

The strength of GIS tools is their ability to integrate a

wide array of data sources within a unified framework.

However, GIS software has advanced to the point where

spatial prediction problems and simple spatial models can

appear trivial. It is always important to remember the

limitations inherent in any type of modeling, and to take

into consideration the underlying data and statistical and

theoretical support for map products produced with off-the-

shelf GIS packages. When presenting model results, com-

munication of uncertainty, understanding of the model, and

recognition of the assumptions that went into it, all remain

essential parts of the analytical process.

Example Application of GIS Modeling

As reviewed by French (2010), archeological studies have

incorporated GIS modeling quite successfully to study

human–landscape relationships on century-millennial

timescales. One example is Samarasundera (2007), who

used a GIS to combine spatial data sources from archeo-

logical surveys, pollen surveys, and other data sources to

develop a model of prehistoric grazing intensity in Cran-

borne Chase in central southern England (Fig. 3). This

model allowed Samarasundera to determine that grazing

alone (as opposed to agricultural intensification) could

have led to the observed forest recession in the area

(French 2010; Samarasundera 2007) .

Spatial Analysis and Modeling

Spatial analysis and modeling is a broad umbrella, under

which a range of operations, analyses, and methods are

embedded. The predominant characteristic of spatial anal-

ysis and modeling is to deal with data in which geographic

locations are intrinsically important. Thus, spatial analysis

and modeling have close connection with GIS tools (Sect.

GIS Tools). We separate them here to emphasize their

arguably more analytical (rather than mapping and

Fig. 3 Example of a GIS model merging archaeological and

environmental data to simulate historical human–landscape interac-

tions in Cranborne Chase in central southern England. The bottom

depicts known prehistoric sites, the middle the degree of canopy

openness predicted from pollen data, and the top the predicted

livestock density required to maintain the observed degree of canopy

openness. Figure reprinted from French (2010). Figure in French

(2010) was adapted by D. Redhouse from Samarasundera, E. 2007.

‘‘Towards a dynamic ecosystem model for the Neolithic upper Allen

valley’’. In: Prehistoric landscape development and human impact in

the upper Allen valley, Cranborne Chase, Dorset, McDonald Institute

Monographs., eds. C. French, H. Lewis, M. J. Allen, M. Green, R.

Scaife, and J. Gardiner, 197–207. McDonald Institute for Archaeo-

logical Research. Reprinted with permission of C. French and D.

Redhouse
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visualization) nature. A plethora of methods and techniques

have been made available in the last couple of decades for

spatial analysis and modeling; for a general overview see

the book edited by Maguire and others (2005).

Worthy of mention is the rich set of tools from spatial

econometrics. Observations from social survey and envi-

ronmental datasets often cannot be considered statistically

independent due to spatial autocorrelation. Samples from

the same area might be expected to experience similar

environmental conditions, leading to spatial autocorrelation

in the residuals of simple OLS models if the spatial

structure of the data and process are not taken into account.

Failure to account for spatial autocorrelation can lead to

bias and even misleading estimates of regression coeffi-

cients (Getis 2009). For background on current techniques

in spatial analysis, see Haining (2003), Fischer and Getis

(2009), and Fotheringham and Rogerson (2009). To

account for spatial autocorrelation, one option is to use

simultaneous autoregressive (SAR) models (Getis 2009).

For spatially varying relationships, GWR may be used to

examine how relationships vary across space (Fothering-

ham and others 2002).

Spatial autocorrelation may exist in the residuals due to

the presence of unobserved covariates (indicating a spatial

error model might be appropriate), or due to spatial

dependence in the dependent variable itself (suggesting a

spatial lag model), or due to both simultaneously (Anselin

and Lozano-Garcia 2009; Getis 2009). Lagrange multiplier

(LM) tests are one method of testing for spatial effects in

regression residuals (Anselin and Rey 1991). Inspection of

semivariograms is another technique for investigating

spatial dependence. The GeoDa software package (http://

geodacenter.asu.edu) is a fully featured, stand-alone

package for geospatial analysis (Anselin and others 2006).

Spatial analysis can also be conducted from within the R

statistical computing environment using the ‘‘spdep’’

package (Bivand 2012; Bivand and others 2008).

An increasing trend under the umbrella of spatial anal-

ysis and modeling is the ‘‘space–time analysis,’’ a rapidly

growing research frontier in geography, particularly in

GIScience. Its increasing popularity was evidenced by the

special symposium ‘‘Space–Time Integration in Geography

and GIScience’’ in the 2011 conference of the Association

of American Geographers and the ‘‘Space–Time Modeling

and Analysis Workshop’’ (of the Environmental Systems

Research Institute) which attracted a large number of sci-

entists and engineers. Space–time analysis emphasizes not

only spatial heterogeneity but also temporal variability in

the processes or phenomena of interest. Scientists have

been developing theories, metrics, and tools to visualize

and understand how economic activities or inequalities

(Rey and others 2011; Ye and Carroll 2011), crime rates

(Wu and others, in press), individual behavioral patterns

(Kwan and Lee 2004; Sang and others 2010; Shaw and

others 2008), etc. may spread and change over both space

and time. Worthy of mention is the theoretical develop-

ment in time geography (Shaw and others 2008; Yuan

2007). Two useful tools in this area are the ArcGIS

extension tool ‘‘Extended Time-Geographic Framework

Tools’’ (http://web.utk.edu/*sshaw/NSF-Project-Website/

default.htm; (Shaw and others 2008) and the open source

‘‘Space–Time Analysis of Regional Systems’’ (http://

ideas.repec.org/p/wpa/wuwpur/0406001.html; Rey and

Janikas 2006).

Example Application of Spatial Analysis

An example application of spatial analysis using GWR is in

a recent paper by López-Carr and others (2012). López-

Carr and others used GWR and multi-level regression to

explore the predictors of forest cover change in Guatemala,

using survey and agricultural census data to measure

demographic change, and MODIS (Moderate Resolution

Imaging Spectroradiometer) satellite imagery to measure

change in forest cover. GWR was used to explore spatial

variation in the coefficient of determination (R2) and in the

regression coefficient estimates. As seen in (Fig. 4, left),

local R2 values from GWR show that the regression model

performs the best in the north and southeast of Guatemala,

suggesting that in other areas of the country the explana-

tory variables included in the model do a poor job of

explaining observed forest cover. GWR also allows

investigating spatial variation (spatial non-stationarity) in

the estimated regression coefficients—as seen in (Fig. 4,

right); an increase in population density appears to be

associated with a decrease in forest cover in northern and

central Guatemala, but to have the opposite effect in the

southern part of the country. This spatial variation could

not be explored with non-spatial regression techniques..

Simulation Approaches

Simulation approaches for modeling human–landscape

systems have seen heavy development in the past three

decades. Simulation approaches allow integration of a

broad array of data sources in a dynamic framework that

can consider feedbacks and non-linearities. Cellular auto-

mata and agent-based modeling (ABM) are two of the most

heavily used simulation approaches in current human–

landscape research. We will first outline cell-based spatial

models, particularly cellular automata (Sect. Cell-based

Spatial Models), and then we will discuss ABM, including

recent developments in participatory ABM (Sect. Agent-

Based Modeling).
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Cell-based Spatial Models

Cell-based spatial models are a type of bottom-up simu-

lation approach often employed to understand human–

landscape systems. Cell-based models invoke a set of rules

(e.g., functions, logic) to update the states or values of cells

(units of the landscape under investigation) through time

(Goodchild 2005). Of particular interest within this type of

models are cellular automata, which are rooted in the lat-

tice network by Stanisław Ulam, the self-replicating

automaton by John von Neumann, and the famous ‘‘game

of life’’ cellular automaton by John Conway (Wolfram

2003). In a cellular automaton model, the landscape under

investigation consists of grid of cells, and each cell is in

one of several discrete states (e.g., urban vs. non-urban;

forest, agricultural, grassland, etc.) at each time step. As

time goes on, the state of each cell is updated according to

certain rules, which consider the state of both the cell under

investigation and a set of pre-defined neighboring cells. CA

has been extensively used to understand urban growth or

expansion (Batty and others 1997; Batty and Xie 2005;

Benenson and Torrens 2006; Clarke and others 1997;

Clarke and Gaydos 1998; Torrens and Benenson 2005).

Cell-based spatial models have had successes in a wide

range of applications; readers with interest are referred to

Maguire and others (2005). Due to their limitations in

modeling activities of mobile entities (e.g., animals, peo-

ple) as well as human decisions in human–landscape sys-

tems, cell-based spatial models are often complemented by

agent-based models (ABMs), our topic in Sect. Agent-

Based Modeling.

Example Application of Cellular Automata

While some of the software references are now a bit dated,

Batty and others (1997) still provides a good introduction

to modeling urban landscapes using cellular automata.

Arguing that cellular automata models are well-suited to

modeling urban growth, Batty and others describe different

set of rules that can generate forms close to those we see in

an urban setting, including regular patterns (similar to

gridded networks of roads). The paper provides an example

of how cellular automata models can be used as an

experimental tool to study patterns of development,

including neighborhood effects (development of a cell may

depend to some extent on development of its neighbors),

constraints, ‘‘memory’’ (the decision on whether to develop

a cell is dependent in part on past development decisions at

that cell) and randomness.

Agent-Based Modeling

Partially rooted in complexity theory, ABM (equivalent to

‘‘individual-based modeling’’ in the ecology literature)

represents human–landscape systems as a series of inter-

acting components (agents or objects) at various levels of

hierarchical organization (Sect. Introduction). An agent-

based model (also ABM) focusing on land-use and land-

cover change, for example, might represent several classes

of agents, including individual agents (people), household

agents (composed of individual agents), neighborhood

agents (composed of household agents), and policy agents

(a class representing the combined influence of

Fig. 4 Results of geographically weighted regression (GWR) pre-

dicting percent woody cover in 2009 in Guatemala. Pictured are the

local R2 values from the GWR regression (left) and the coefficient

estimates for the percent population density change from 1990 to

2000 (right). Adapted figure reprinted from Ecological Modelling,

229, López-Carr, D., J. Davis, M. M. Jankowska, L. Grant, A.

C. López-Carr, and M. Clark., Space versus place in complex human–

natural systems: Spatial and multi-level models of tropical land use

and cover change (LUCC) in Guatemala, pages 64-75, Copyright

2012, with permission from Elsevier
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policymakers). The structure of ABM allows researchers to

consider the possibility of emergent phenomena that may

arise from lower level interactions (Liu and others 2007a;

Werner and McNamara 2007). See the recent paper by

Manson and others (2012) for a discussion of ABM from a

complexity perspective.

ABM is useful to human–landscape analysts due to its

ability to integrate data from multiple spatial, temporal,

and/or organizational scales, to include heterogeneous

agents, their interactions (and resulting emergent phe-

nomena), and to be coupled with cellular models (An and

others 2005; Liu and others 2007a; Werner and McNamara

2007). Usage of ABM in the human–landscape field con-

tinues to increase rapidly. ABMs have seen much use in

land-use and land-cover change research—work aimed at

understanding the patterns, processes, and change in human

use of land (land-use) and the biophysical attributes of the

land surface (land cover, Lambin and others 2001). For a

review of ABM in modeling land-use and land-cover

change, see Parker and others (2003); for ABM usage in

ecology and ecosystem management, see Grimm (1999) or

Bousquet and Le Page (2004); for ABM in economics, see

Heckbert and others (2010); for ABM in geography and

other spatial sciences, see Torrens (2010); for modeling

individual-level human decisions in human–landscape

systems, see An (2012). Examples of ABM can be found

throughout the human–landscape literature (An and others

2005; Axtell and others 2002; Bithell and Brasington 2009;

Brown and Robinson 2006; Castella and others 2005; Chen

and others 2012; Deadman and others 2004; Entwisle and

others 2008; Evans and Kelley 2004; McNamara and

Werner 2008; Tews and others 2006).

Although the promise of ABM is great for human–

landscape research, as ABMs have grown in popularity, the

lack of a common platform and standardized protocols for

communication of model structure and results has ham-

pered evaluation of models, complicating comparison

across sites, and making duplication of results near

impossible (An 2012; Grimm and others 2005; Parker and

others 2003). One common framework for ABM descrip-

tion that has seen increasing usage in the literature is the

ODD (overview, design concepts and details) framework

(Grimm and others 2010; Grimm and others 2005; Grimm

and Railsback 2012; Schmolke and others 2010). The Open

ABM Consortium (http://www.openabm.org, Janssen and

others 2008) maintains a library of ABMs, many of which

have adopted ODD. The COMSES (Computational Mod-

eling for SocioEcological Science) network, a National

Science Foundation funded project (PI Michael Barton,

Arizona State University), is building off the OpenABM

framework to promote ABM modeling and education,

including hosting an ABM modeling competition (Janssen

and Rollins 2011).

Another key challenge for ABM researchers is cross-site

comparison and synthesis. ABMs tend to be site-specific,

making generalization difficult. Simple models have proven

easier to generalize across sites: one example is provided by

Acevedo and others (2008), who developed a generic model

framework to explore how stakeholder values influence land-

use decision- making and land-use and land-cover change.

The successful cross-site comparison accomplished by

Acevedo and others (2008) exemplifies the advantage of

comparative studies of using simplified models. Simple

models can more easily be understood and modified as nec-

essary to account for site-specific phenomena while retaining

the ability for modelers to compare results across sites.

Several toolkits are available for ABM research. For new

ABM modelers, NetLogo (freely downloadable at

http://ccl.northwestern.edu/netlogo/; Wilensky 1999) allows

users to quickly begin constructing models, with the aid of a

graphical interface for model design. Repast Simphony

(available at http://repast.sourceforge.net/; North and others

2007) is a Java-based modeling system that supports GUI-

based model design, in addition to model development in

Logo, Groovy, or Java. See Lytinen and Railsback (2012) for a

comparison of the RePast and NetLogo frameworks. Another

route modelers pursue is building custom models using their

preferred languages or platforms (Matlab, Python, Java,

C??, etc.). In this case, care should be taken to insure that

model design and structure is clearly communicated, so that

those unfamiliar with the chosen language can easily under-

stand results. Standardized model description formats like the

ODD framework are particularly important here.

Participatory agent-based modeling (PABM) (similar to

the ‘‘companion modeling,’’ or ComMod process described

in the ecology literature, for example see Ruankaew and

others 2010) is an iterative approach to ABM design and

modeling that involves stakeholder groups throughout the

model development process. This approach directly

incorporates local knowledge, insuring the relevance of

modeling to stakeholders (Parker and others 2003). In

addition, ABM can often provide visual tools in a partici-

patory setting, where stakeholders can review and com-

ment on both model structure and spatially explicit

simulation results (Parker and others 2003). When model-

ing is conducted in concert with stakeholders, an ABM can

be used as a ‘‘common artificial world’’ that is a ‘‘shared

representation’’ of a coupled human–landscape system

(Bousquet and others 2002). Although still a developing

research area, participatory modeling approaches have seen

used in a range of human–landscape systems, including

forestry management (Simon and Etienne 2010), ground-

water management (Zellner 2008), land-use and land-cover

change (Castella and others 2005; Pak and Brieva 2010),

and labor migration in response to fluctuating agricultural

productivity (Naivinit and others 2010).
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‘‘Mediated modeling’’ (MM) is a participatory approach

that makes use of system dynamics models (which take an

aggregate approach to modeling feedbacks and flows in a

complex system) and simulation approaches like ABM as

part of a larger participatory process that involves stake-

holders in model building (van den Belt and others 2010).

‘‘Small system dynamics’’ models take a step back from

ABM (which may be developed as a precursor), and

include only a small number of feedback loops (8 or less)

to present an aggregate picture of system dynamics that

may be easier to communicate and understand compared to

ABM (Ghaffarzadegan and others 2011). Participatory

modeling using role-playing games (RPG) is one of the

most direct ways of involving stakeholders in model

development. RPGs can assist stakeholders in discussing

and understanding an agent-based model, increasing their

comfort with the simplifications used in an ABM (Naivinit

and others 2010). Experiments combining ABM with RPG

exercises have now been carried out in several study

regions (see D’Aquino and others 2002 for a brief review).

Example Application of ABM

Agent-based models are well-suited for integrating multi-

disciplinary research into a unified framework. One example

is the authors’ work in the Chitwan Valley, Nepal. The Chit-

wan Valley is a primarily rural agricultural area along the

Nepal-India border in south-central Nepal, bordering the

Chitwan National Park, a UNESCO World Heritage site that is

home to several endangered species. To better understand

feedbacks between land-use and land-cover and micro-level

human decision-making, we have combined existing results

from the peer-reviewed literature with new surveys and

analysis to build a spatially explicit agent-based model of the

Chitwan Valley (An and others, in preparation; Zvoleff and

An, in press). The model contains a population of individuals,

households, and neighborhoods taken from survey data, and

links them with the landscape using a series of environmental

and demographic submodels (Fig. 5). This approach allows

researchers to explore different scenarios of human and

landscape change. For example, investigators can use the

model to explore how changes in household structure, such as

the desired family size, might affect fuelwood extraction from

local forests (Fig. 6).

Mixed-Method Techniques

A significant challenge in human–landscape research is

linking qualitative and quantitative data, and communi-

cating modeling results to stakeholders (Lach this volume).

Alternative futures modeling (Sect. Alternative Futures

Modeling) and integrated assessment models (Sect.

Integrated Assessment Models) are two examples of tools

that are useful for linking these mixed data types.

Alternative Futures Modeling

Alternative futures modeling (also referred to as scenario

analysis) is a strategy that uses a combination of models

and (generally) stakeholder involvement to explore a set of

scenarios depicting alternative future states of a human–

landscape system, usually contingent on present and future

Fig. 5 Processes in the Chitwan agent-based model

Fig. 6 Example of a scenario from the Chitwan agent-based model,

exploring how changes in desired family size might affect total

fuelwood consumption in the Chitwan Valley over a 25 year

timescale
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actions and particular pathways of policy development.

Use of alternative futures modeling for a study does not

dictate a particular quantitative modeling strategy (regres-

sion analysis or ABM simulation, for example), though the

examples in the literature generally use a combination of a

spatial simulation models like ABM for modeling human

decision-making, with some models including a coupled

set of environmental sub-models. The resulting alternative

futures (scenarios) can be used as a policy analysis tool—

once the potential range of future states of a system has

been laid out, policymakers can attempt to develop policies

that are likely to be beneficial under the broadest possible

range of likely outcomes. The end goal of alternative

futures analysis is to develop policies that will be ‘‘robust

against future surprises’’ (Hulse and others 2008). Not all

alternative futures analyses use ABM or similar simulation

models. Some studies’ main focus is participatory plan-

ning—these studies focus primarily on stakeholder

involvement and qualitative comparison of alternative

policy scenarios (Daconto and Sherpa 2010). Other studies

make use of alternative quantitative approaches, such as

linear programing (Bryan and others 2011).

Alterative futures frameworks are advantageous for anal-

ysis and integration of human–landscape systems given the

high degree of stakeholder involvement in the process, and

their relative ease of presentation to and understanding by

managers and non-specialists. However, alternative futures

approaches may be less likely to consider the possibility of

unstable dynamics or ‘‘surprises.’’ Hulse and others (2008)

found that when two types of scenarios were compared, one

with citizen input, the other with an agent-based model and

‘‘expert’’ input from key stakeholders and researchers in the

field, the citizen-input model was less likely to consider sce-

narios with large or abrupt changes from present-day condi-

tions. Careful design of the participatory process may alleviate

these concerns to some extent (Ison and others 2010; Johnson

and others 2012). However, given the decadal to century-long

timescales considered in many alternative futures models,

new methods of validation and verification are needed to

better communicate the uncertainty in the results, and poten-

tial for low-likelihood but high-impact alternative scenarios.

Example Application of Alternative Futures Models

Extensive work has been conducted on alternative futures

modeling in the Willamette Basin, Oregon. Bolte and

others (2007) present ‘‘EvoLand’’ a model of human–

landscape change in the Willamette Basin, that models the

decision-making of ‘‘actors’’ (land management decision-

makers) as constrained and influenced by cultural and

policy ‘‘metaprocesses.’’ EvoLand uses a ‘‘plug-in’’ struc-

ture to allow the modelers to study how decision-making

processes and policy influence various landscape

characteristics, such as aquatic and terrestrial habitat and

land market values. Guzy and others (2008) use the

framework to test the impact of alternative management

policies on ecosystem services, while Hulse and others

(2008) compare citizen-based and expert-based approaches

to scenario building and modeling.

Integrated Assessment Models

Integrated assessment aims to produce information for

policy comparison. These models fall somewhere between

alternative futures analysis (Sect. Alternative Futures

Modeling) and simulation models (Sect. Simulation

Approaches), but are generally closer to traditional eco-

nomic models than other approaches typically encountered

in human–landscape research.

Integrated assessment models have thus far had the greatest

impact on climate change policymaking (see Salter and others

(2010) for a recent review, and Perdinan and Winkler, this

volume), though they have also seen some usage in other

sectors (see the special issue of Agricultural Systems edited by

Bezlepkina and others (2011) for a review of current inte-

grated assessment work in agriculture). In climate change

studies, integrated assessment models typically couple exist-

ing general equilibrium economic models to simplified geo-

physical climate models (Nordhaus 2011; Nordhaus 2009;

Nordhaus and Boyer 1999).

Integrated assessment models of climate change have

been criticized as the simplifications necessary for tractable

solutions generally eliminate the possibility of different

stable equilibrium states, or of unstable dynamics (DeCa-

nio 2003; Werner and McNamara 2007). Another problem

encountered with using integrated assessment models for

decadal to century-long planning is that to evaluate and

compare investments over time, modelers must consider

the discount rate. A high discount rate reduces the present

valuation of future events (the cost of sea-level rise due to

climate change for example). A low discount rate would

lead to recommendations to spend heavily now to avoid

possible future impacts of climate change (even when the

impacts might be low-likelihood, or far in the future). The

choice of discount rate can radically affect the results of a

study and is not a simple parameter to determine—eco-

nomically or philosophically (Bell and others 2003; Das-

gupta 2008; Portney and Weyant 1999). As with any

model, managers need to be aware of the assumptions

behind any given integrated assessment model to properly

evaluate the model and make management decisions.

Example Application of Integrated Assessment Modeling

The Dynamic Integrated Climate-Economy (DICE) and

Regional Integrated Model of Climate and the Economy
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(RICE) models are two of the most cited integrated

assessment models of climate change (Nordhaus 2011;

Nordhaus 2009; Nordhaus and Boyer 1999). The two clo-

sely related models consider global climate change using

an optimization framework to optimize investments in

consumption, capital, and emission reductions over time.

The RICE model (the regionally explicit version) breaks

the globe into twelve representative regions, each with

unique attributes (population growth, technological devel-

opment, etc.). The model also contains a geophysical

module relating economic activity and climate. The cou-

pled model allows exploration of the optimal investment

approach (in consumption, capital, and environment) to

maximize social welfare over time.

Conclusions

Study of human–landscape systems requires methods that

can integrate data or models across spatial and temporal

scales, across disciplines, and across levels of organization.

Just as no model is perfect, no single tool is sufficient for

human–landscape analysis. We have discussed tools from

four broad categories: statistical methods, GIS and spatial

analysis methods, simulation approaches, and mixed-

method techniques. Simulation methods have received the

bulk of the focus in the recent literature due to their ability

to efficiently handle data from multiple scales and to

examine system dynamics, while also integrating well with

other methods and approaches, such as participatory

research and scenario analysis. However, researchers must

keep an open mind, given the diversity of disciplinary

approaches in human–landscape research.

The research question in particular should be the pri-

mary determinant of what approach to use when examining

a human–landscape system (see Table 2). If researchers

seek to understand the relative effect of a small number of

variables (e.g., household age structure, vegetative cover)

with only panel data available, while controlling for

potentially confounding factors at a micro-scale (e.g.,

migration patterns, household economics), statistical

methods are likely a good fit. If understanding system

dynamics is important, simulation models will likely be

most beneficial. If qualitative communication and

description of future states of a system over a decadal or

century-long timescale is most important, alternative

futures approaches or integrated assessment might be most

appropriate. Regardless of the chosen approach, the limi-

tations of each strategy must be kept in mind (Table 3).

Understanding and communicating uncertainty is a

responsibility of all analysts.

A key development in the recent literature is the

increasing usage of various participatory approaches to

Table 2 Key questions to consider in choosing an approach for

analyzing human–landscape interactions

System feature of interest Suggested approaches

Dynamics (temporal) Simulation models (ABM, participatory

ABM), survival analysis

Dynamics (spatial) Cell-based spatial models, ABM, GIS

tools

Feedbacks Simulation models

Outcomes (annual-

decadal timescales)

Statistical methods, simulation

approaches, mixed methods

techniques, Bayesian data fusion

Outcomes (century-

millennial timescales)

Integrated assessment, alternative futures

Instabilities or surprises Simulation approaches

Drivers of change Regression approaches, spatial analysis

and modeling

Table 3 General overview of some of the strengths and limitations of

the four categories of methods

Approach Strengths Weaknesses

Statistical

methods

Good for exploratory

analysis

Difficult to examine

system dynamics

Rapidly implemented Common assumptions

(normality and

independence of

residuals, linearity)

often not satisfied in

human–landscape

studies

Broadly understood

Well-established

methods for

representing uncertainty

GIS and

spatial

analysis

methods

Good for exploratory

analysis

Some software packages

stress visualization over

analysis

Excellent visualization

tools

It can be (too) easy to

make plots or maps

with little theoretical

support

Can easily and precisely

(including coordinate

transformations, etc.)

handle spatial data

Support for temporal

dimension traditionally

weak in GIS tools

Can account for spatial

autocorrelation

Simulation

approaches

Can integrate data from

multiple temporal and

spatial scales, can

represent hierarchically

structured systems, and

nonlinear dynamics

Models can be difficult to

construct, and are often

hard to replicate

Integrate well with

mixed methods

approaches

Understanding the

structure of complex

simulation models can

be difficult even for

experts

Good at representing

interactions between

system components,

including feedbacks

Communication of

uncertainty sometimes

overlooked
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increase stakeholder involvement. Participatory modeling

strategies (cooperative scenario development, role-playing

games, etc.) are becoming more common, and may aid

analysts in ensuring that their models are responsive to the

needs of managers and other stakeholders in human–

landscape systems. Participatory modeling strategies may

also aid in developing and validating more useful models.

Challenges still remain in human–landscape research.

Advancement in dynamic modeling approaches (such as

ABM) is important, but an increasing need exists for cross

comparison of models, and generalization of findings

across sites. New methods of data fusion also need con-

tinued development if they are to be more widely used by

non-specialists. Another continuing challenge is to increase

communication and cross-fertilization across the many

disciplines involved in human–landscape systems. Inte-

grating qualitative approaches with quantitative methods is

one example that could pay high returns in increasing the

depth of our understanding of human–landscape systems.
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Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data

analysis with R, 1st ed. Springer, New York

Bogaert P, Fasbender D (2007) Bayesian data fusion in a spatial

prediction context: a general formulation. Stoch Environ Res

Risk Assess 21:695–709. doi:10.1007/s00477-006-0080-3

Bolte JP, Hulse DW, Gregory SV, Smith C (2007) Modeling

biocomplexity - Actors, landscapes and alternative futures.

Table 3 continued

Approach Strengths Weaknesses

Mixed

methods

Good at representing

qualitative findings

Limitations and

assumptions must be

clearly communicated

(for example discount

rates in integrated

assessment models)

Good for decision-

making under

uncertainty—

alternative policies can

be explored

Wide range of

techniques—readers

may be unfamiliar with

individual methods

Can consider long time

horizons (decades-

centuries) using

qualitative storylines

Environmental Management (2014) 53:94–111 107

123

http://dx.doi.org/10.1016/j.geoforum.2006.10.008
http://dx.doi.org/10.1016/j.geoforum.2006.10.008
http://dx.doi.org/10.1016/j.ecolmodel.2011.07.010
http://dx.doi.org/10.1080/1747423X.2010.500686
http://dx.doi.org/10.1080/1747423X.2010.500686
http://dx.doi.org/10.1111/j.1538-4632.1991.tb00228.x
http://dx.doi.org/10.1111/j.1538-4632.1991.tb00228.x
http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x
http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x
http://dx.doi.org/10.1126/science.284.5411.107
http://dx.doi.org/10.1016/S0038-0121(02)00047-2
http://dx.doi.org/10.1111/j.1467-9671.2006.00246.x
http://dx.doi.org/10.1016/j.agsy.2010.11.002
http://dx.doi.org/10.1007/s00477-006-0080-3


Environ Model Softw 22:570–579. doi:10.1016/j.envsoft.2005.

12.033

Bosco FJ (2006) Actor-network theory, networks, and relational

approaches in human geography. Approaches to human geogra-

phy. SAGE, London, pp 136–146

Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem

management: a review. Ecol Model 176:313–332. doi:10.1016/

j.ecolmodel.2004.01.011

Bousquet F, Barreteau O, D’Aquino P et al (2002) Multi-agent

systems and role games: collective learning processes for

ecosystem management. Complexity and ecosystem manage-

ment. the theory and practice of multi-agent systems. Edward

Elgar, Cheltenham, pp 248–286

Brown I (2006) Modelling future landscape change on coastal

floodplains using a rule-based GIS. Environ Model Softw

21:1479–1490. doi:10.1016/j.envsoft.2005.07.011

Brown O (2008) Migration and climate change. International

Organization for Migration, Geneva

Brown DG, Robinson DT (2006) Effects of heterogeneity in

residential preferences on an agent-based model of urban sprawl.

Ecol soc 11:46

Brown DG, Page S, Riolo R et al (2005) Path dependence and the

validation of agent-based spatial models of land use. Int J Geogr

Inf Sci 19:153–174

Bryan BA, Crossman ND, King D, Meyer WS (2011) Landscape futures

analysis: assessing the impacts of environmental targets under

alternative spatial policy options and future scenarios. Environ

Model Softw 26:83–91. doi:10.1016/j.envsoft.2010.03.034

Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity:

indicators of recent declines. Science 328:1164–1168. doi:

10.1126/science.1187512

Calder C, Lavine M, Müller P, Clark JS (2003) Incorporating multiple

sources of stochasticity into dynamic population models. Ecol-

ogy 84:1395–1402. doi:10.1890/0012-9658

Castella JC, Trung TN, Boissau S (2005) Participatory simulation of

land-use changes in the northern mountains of Vietnam: the

combined use of an agent-based model, a role-playing game, and

a geographic information system. Ecol Soc 10:27

Chen X, Lupi F, An L et al (2012) Agent-based modeling of the

effects of social norms on enrollment in payments for ecosystem

services. Ecol Model 229:16–24. doi:10.1016/j.ecolmodel.2011.

06.007

Clark JS (2005) Why environmental scientists are becoming Baye-

sians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x

Clarke K, Gaydos L (1998) Loose-coupling a cellular automaton

model and GIS: long-term urban growth prediction for San

Francisco and Washington/Baltimore. Int J Geogr Inf Sci

12:699–714

Clarke K, Hoppen S, Gaydos L (1997) A self-modifying cellular

automaton model of historical urbanization in the San Francisco

Bay area. Environ Plan B Plan Design 24:247–261. doi:10.1068/

b240247

Corrado L, Fingleton B (2011) Multilevel modelling with spatial

effects. University of Strathclyde Business School, Department

of Economics, Glasgow

Crawford TW, Messina JP, Manson SM, O’Sullivan D (2005)

Complexity science, complex systems, and land-use research.

Environ Plan B Plan Design 32:792–798

D’Aquino P, Barreteau O, Etienne M et al (2002) The Role Playing

Games in an ABM participatory modeling process: outcomes

from five different experiments carried out in the last five years.

Integrated Assessment and Decision Support. 1st Biennial

Meeting of the International Environmental Modelling and

Software Society, Lugano

Daconto G, Sherpa LN (2010) Applying scenario planning to park

and tourism management in Sagarmatha National Park, Khumbu,

Nepal. Mt Res Dev 30:103–112. doi:10.1659/MRD-JOURNAL-

D-09-00047.1

Dasgupta P (2008) Discounting climate change. J Risk Uncertain

37:141–169. doi:10.1007/s11166-008-9049-6

Deadman P, Robinson D, Moran E, Brondizio E (2004) Colonist

household decisionmaking and land-use change in the Amazon

Rainforest: An agent-based simulation. Environ Plan B Plan

Design 31:693–709

DeCanio SJ (2003) Economic models of climate change: a critique.

Palgrave Macmillan, New York

Entwisle B, Malanson GP, Rindfuss RR, Walsh SJ (2008) An agent-

based model of household dynamics and land use change. J Land

Use Sci 3:73. doi:10.1080/17474230802048193

Evans TP, Kelley H (2004) Multi-scale analysis of a household level

agent-based model of landcover change. J Environ Manage

72:57–72. doi:10.1016/j.jenvman.2004.02.008

Fasbender D, Radoux J, Bogaert P (2008) Bayesian data fusion for

adaptable image pansharpening. Geosci Remote Sens IEEE

Transact on 46:1847–1857. doi:10.1109/TGRS.2008.917131

Fischer MM, Getis A (2009) Handbook of applied spatial analysis:

software tools, methods and applications, 1st edn. Springer,

Berlin

Folke C (2006) Resilience: the emergence of a perspective for social-

ecological systems analyses. Global Environ Change 16:253–267.

doi:10.1016/j.gloenvcha.2006.04.002

Fotheringham AS, Rogerson PA (2009) The SAGE handbook of

spatial analysis. Sage Publications Ltd

Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically

weighted regression: the analysis of spatially varying relation-

ships. Wiley, New York

Fox J, Rindfuss RR, Walsh SJ (2002) People and the environment:

approaches for linking household and community surveys to

remote sensing and GIS. Kluwer Academic, Norwell

French C (2010) People, societies, and landscapes. Science 328:443–444.

doi:10.1126/science.1186019

Gelman A, Hill J (2007) Data analysis using regression and

multilevel/hierarchical models. Cambridge University Press,

Cambridge

Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data

analysis, 2nd ed. Chapman and Hall/CRC, Boca Raton

Getis A (2009) Spatial autocorrelation. In: Fischer MM, Getis A (eds)

Handbook of applied spatial analysis: software tools, methods

and applications, 1st edn. Springer, Berlin, pp 255–278

Ghaffarzadegan N, Lyneis J, Richardson GP (2011) How small

system dynamics models can help the public policy process. Syst

Dyn Rev 27:22–44. doi:10.1002/sdr.442

Ghimire DJ, Axinn WG (2010) Community context, land use, and

first birth. Rural Sociol 75:478–513. doi:10.1111/j.1549-0831.

2010.00019.x

Ghimire DJ, Hoelter LF (2007) Land use and first birth timing in an

agricultural setting. Popul Environ 28:289–320

Girard LF, Toro P (2007) Integrated spatial assessment: a multicri-

teria approach to sustainable development of cultural and

environmental heritage in San Marco dei Cavoti, Italy. CEJOR

15:281–299. doi:10.1007/s10100-007-0031-1

Goldstein H (1999) Multilevel statistical models. Arnold, London

Goodchild MF (2005) GIS and modeling overview. In: Maguire DJ,

Batty M, Goodchild MF (eds) GIS, spatial analysis, and

modeling. ESRI, Redlands, pp 1–18

Grimm V (1999) Ten years of individual-based modelling in ecology:

what have we learned and what could we learn in the future?

Ecol Model 115:129–148

Grimm V, Railsback SF (2012) Designing, formulating, and com-

municating agent-based models. In: Heppenstall AJ, Crooks AT,

See LM, Batty M (eds) Agent-based models of geographical

systems. Springer, Dordrecht, pp 361–377

108 Environmental Management (2014) 53:94–111

123

http://dx.doi.org/10.1016/j.envsoft.2005.12.033
http://dx.doi.org/10.1016/j.envsoft.2005.12.033
http://dx.doi.org/10.1016/j.ecolmodel.2004.01.011
http://dx.doi.org/10.1016/j.ecolmodel.2004.01.011
http://dx.doi.org/10.1016/j.envsoft.2005.07.011
http://dx.doi.org/10.1016/j.envsoft.2010.03.034
http://dx.doi.org/10.1126/science.1187512
http://dx.doi.org/10.1890/0012-9658
http://dx.doi.org/10.1016/j.ecolmodel.2011.06.007
http://dx.doi.org/10.1016/j.ecolmodel.2011.06.007
http://dx.doi.org/10.1111/j.1461-0248.2004.00702.x
http://dx.doi.org/10.1068/b240247
http://dx.doi.org/10.1068/b240247
http://dx.doi.org/10.1659/MRD-JOURNAL-D-09-00047.1
http://dx.doi.org/10.1659/MRD-JOURNAL-D-09-00047.1
http://dx.doi.org/10.1007/s11166-008-9049-6
http://dx.doi.org/10.1080/17474230802048193
http://dx.doi.org/10.1016/j.jenvman.2004.02.008
http://dx.doi.org/10.1109/TGRS.2008.917131
http://dx.doi.org/10.1016/j.gloenvcha.2006.04.002
http://dx.doi.org/10.1126/science.1186019
http://dx.doi.org/10.1002/sdr.442
http://dx.doi.org/10.1111/j.1549-0831.2010.00019.x
http://dx.doi.org/10.1111/j.1549-0831.2010.00019.x
http://dx.doi.org/10.1007/s10100-007-0031-1


Grimm V, Revilla E, Berger U et al (2005) Pattern-oriented modeling

of agent-based complex systems: lessons from ecology. Science

310:987–991. doi:10.1126/science.1116681

Grimm V, Berger U, DeAngelis DL et al (2010) The ODD protocol: a

review and first update. Ecol Model 221:2760–2768. doi:

10.1016/j.ecolmodel.2010.08.019

Guzy MR, Smith CL, Bolte JP et al (2008) Policy research using

agent-based modeling to assess future impacts of urban expan-

sion into farmlands and forests. Ecol Soc 13:37
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