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Extracting roads in aerial images has numerous applications in artificial intelligence and multimedia comput-

ing, including traffic pattern analysis and parking space planning. Learning deep neural networks, though

very successful, demand vast amounts of high-quality annotations, of which acquisition is time-consuming

and expensive. In this work, we propose a semi-supervised approach for image-based road extraction in which

only a small set of labeled images are available for training to address this challenge. We design a pixel-wise

contrastive loss to self-supervise the network training to utilize the large corpus of unlabeled images. The

key idea is to identify pairs of overlapping image regions (positive) or non-overlapping image regions (nega-

tive) and encourage the network to make similar outputs for positive pairs or dissimilar outputs for negative

pairs. We also develop a negative sampling strategy to filter false-negative samples during the process. An

iterative procedure is introduced to apply the network over raw images to generate pseudo-labels, filter and

select high-quality labels with the proposed contrastive loss, and retrain the network with the enlarged train-

ing dataset. We repeat these iterative steps until convergence. We validate the effectiveness of the proposed

methods by performing extensive experiments on the public SpaceNet3 and DeepGlobe Road datasets. Results

show that our proposed method achieves state-of-the-art results on public image segmentation benchmarks

and significantly outperforms other semi-supervised methods.
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1 INTRODUCTION

With the rapid development of remote sensing technology, high-quality, fine-resolution aerial and

satellite images can be acquired at much lower cost and provide promising resources for various

applications, including emergency management, urban planning, and disaster monitoring. Road

extraction is one of the most critical tasks that utilize these image data and plays a vital role in

autonomous driving, road condition evaluation, Global Positioning System (GPS) navigation, and

intelligent city management [1, 30]. In the literature, deep learning–based approaches have shown

great potential in road extraction from aerial and satellite images [5, 6, 23, 24, 38, 46, 55]. However,

most of these methods are based on supervised learning, which highly relies on the quantity and

quality of annotations. More data help improve the precision and recall of a supervised model

for road extraction. Nevertheless, creating and maintaining images with pixel-wise road labels is

time-consuming and expensive. In this work, we will develop a learning-based method to leverage

large-scale raw satellite images while minimizing human efforts. Figure 1 shows the results of the

proposed method over two satellite images.

Our work is relevant to past efforts on semi-supervised learning and its applications over se-

mantic segmentation. These methods can maximize the use of unlabeled images and have gained

encouraging successes on various image-based tasks, including image classification [2, 8, 57, 66],

text classification [37, 65], object detection [31, 52, 64], and dehaze [35, 54, 60]. However, few stud-

ies employ semi-supervised methods for image-based road extraction [38]. This article introduces

a semi-supervised iterative approach for road extraction, in which a small set of labeled images and

a large number of unlabeled images are incorporated for training. As shown in Figure 2, our empir-

ical study suggested that training a supervised road extraction model with fewer satellite images

will lead to inferior performance. We propose an iterative learning framework to fully take advan-

tage of the unlabeled image corpus. Our framework includes three iterative steps: initially training

a semi-supervised model with a pixel-wise contrastive loss; applying the current network to the

raw images to obtain their pseudo labels, which are used to enlarge the training set; and retraining

a semi-supervised model with pseudo labels. We repeat the last two steps until convergence.

Our work is also inspired by the so-called contrastive learning, which has been proven to be

a practical self-supervised approach for generic image tasks [11, 22]. It aims to learn a deep rep-

resentation so that positive pairs of training images have similar representations, whereas the

representations of negative pairs are dissimilar. Previous contrastive learning methods usually

work on image-level features and minimize the distance between augmented views of the same

image while maximizing the distance between different images [11, 22]. The same idea is not valid

for pixel-wise image tasks, including image-based road extraction, because of the challenges of

finding positive and negative pairs without access to pixel-level labels. In this work, we propose

a simple yet effective way to collect positive pairs of image regions for roadway extraction. We

first randomly crop an image region (e.g., 256 by 256 pixels) and expand this region into the ad-

jacent areas to obtain a pair of overlapping image regions. These two enlarged regions are then

fed into the network, and the network outputs are expected to be the same for the common area.

This leads to the positive pairs of image regions. This method extracts the feature representations

of the common area with different surrounding contexts and tries to minimize the divergence be-

tween these representations. Similarly, we will crop negative image regions that include different

shapes of infrastructures and backgrounds. A contrastive loss function is then defined over both

the positive and negative pairs to guide the training of the network. This pixel-wise contrastive

learning scheme can be applied to both labeled and unlabeled images.

We further introduce an iterative scheme to take advantage of the raw images in the semi-

supervised setting. Similar approaches were previously developed to apply self-supervised tech-

niques to semi-supervised segmentation tasks [8, 10, 19, 26]. These methods usually first obtain
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Fig. 1. Image-based road extraction. (a) Two aerial images; (b) ground-truth pixel-wise labels; (c) labels es-

timated by a supervised method [49]; (d) labels estimated by the proposed semi-supervised method. Both

methods (c) and (d) have access to the same labeled data. Our method (d) utilizes extra unlabeled images.

Fig. 2. Precision-Recall curve for U-Net [49] trained with different proportions of the labeled images on the

dataset SpaceNet3 [56].

pseudo annotations from the model trained with labeled data and retrain the model repeatedly.

One might also use curriculum learning [7] to select the most appropriate training samples at each

training iteration. In this work, we develop an iterative labeling method that employs the proposed

contrastive loss to rank raw images with pseudo labels and add the highly ranked pseudo labels

into the labeled set. The iterative scheme leads to a progressive growing algorithm that can grow

the labeled set with high-confident pseudo labels.

We conduct extensive experiments on the public SpaceNet3 [56] and DeepGlobe Road [17]

datasets. Results suggest that the proposed semi-supervised method outperforms other semi-

supervised methods. The following are the main technical contributions of this study.

• We develop an effective contrastive learning approach for extracting roadways in images.

A pixel-wise contrastive loss is introduced to explore the contextual representation of local

image regions and leverage both labeled and unlabeled training images.
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• We propose an iterative self-training framework that can employ the proposed contrastive

loss to identify high-quality pseudo labels and gradually grow the training dataset to boost

model performance.

• The proposed method achieves state-of-the-art results on the public SpaceNet3 and Deep-

Globe Road datasets and significantly outperforms the alternative supervised methods using

the same amount of labeled images.

The rest of this articlde is organized as follows. Section 2 briefly reviews the related work. In

Section 3, the proposed iterative semi-supervised approach with the pixel-wise contrastive loss for

road extraction is illustrated in detail. Experimental results are presented in Section 4. Finally, we

draw our conclusions in Section 5.

2 RELATIONSHIPS TO PREVIOUS WORK

This work is closely relevant to four research streams in the literature: image-based road extraction,

semi-supervised semantic segmentation, contrastive loss, and self-supervised learning.

2.1 Image-Based Road Extraction

Numerous approaches have been explored to extract roads from aerial and satellite images. In the

past few decades, traditional methods employed handcrafted image features to represent individual

pixels [41, 48] or objects [42, 44] in images. Although traditional road extraction methods have

achieved some good results, the robustness and generalization ability is limited as the features are

manually designed and the procedure might not be generalized well to new testing images.

With the successes of deep neural networks, state-of-the-art methods usually cast road extrac-

tion as a segmentation problem and employ an end-to-end trained network to output pixel-wise

labels directly. U-Net [49] introduced a downsampling path to obtain semantic information and

a symmetric upsampling path to acquire localization information, and has been widely used for

image-based road extraction [40, 71]. To further boost road extraction performance, cascaded neu-

ral networks are utilized to carry out a multistage semantic segmentation framework [14]. A Gen-

erative Adversarial Network (GAN) was also incorporated with road detection models [70]. Some

recent works focus on improving connections of road networks [6, 43]. Batra et al. [6] proposed

a supervised learning framework in which a multi-branch Convolutional Neural Network (CNN)

is utilized to simultaneously learn road orientation and segmentation, in which the orientation

branch aims to improve road connectivity.

Deep learning methods can be further integrated with graph-based representations of roadways

to improve system accuracy. A classical way is to consider each road segment as a graph node and

connect nodes following the road topology [5, 55]. The classical work RoadTracer [5] trains a CNN

and adopts an iterative search process to capture connected road pixels to get the road graph.

Both segmentation-based and graph-based methods have achieved impressive performance for

road extraction tasks. However, most of these methods use supervised learning techniques and

require a large amount of annotated training data. A few studies employed semi-supervised road

extraction methods [38]. Liu et al. [38] proposed a semi-supervised framework to extract roads,

incorporating high-level feature selection, Markov Random Field (MRF), and ridge transversal

method. Unlike the mentioned methods, our study focuses on the segmentation-based method

to explore a practical semi-supervised approach with pixel-wise contrastive loss and iterative

labeling for road extraction.

2.2 Semi-supervised Semantic Segmentation

Semi-supervised learning aims to employ a small set of labeled and a significant number of unla-

beled data to enhance representation learning. In the literature, multiple efforts exist to train deep
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networks in the semi-supervised setting [10, 13, 15, 26, 39, 59, 62]. One category of these methods

added the so-called consistency regularization to the loss function to promote the consistency of

predictions under different perturbations [20, 21, 33, 47]. One popular choice is to augment data

and impose consistency regularization between the augmented and original samples. In particu-

lar, Yun et al. [20] applied CutMix over training images and imposed the consistency between

the network outputs over mixed images and raw images. Ouali et al. [47] further presented a

cross-consistency training (CCT) scheme, which enforces consistency between the outputs of the

primary and affiliated decoder.

Generative models are also leveraged with consistency regularization for semi-supervised se-

mantics segmentation [45, 53]. Mittal et al. [45] utilized two network branches to learn from lim-

ited labeled and annotation-free samples; one branch was a GAN-based model. Souly et al. [53]

proposed a GAN-based approach to train the network with additional weakly labeled data. They

employed GAN to generate additional images useful for the classification task.

2.3 Contrastive Learning

Contrastive learning can be used in both supervised and unsupervised settings, and some studies

have explored the application of contrastive learning on semantic segmentation [3, 11, 22, 34, 57, 60,

72, 73, 75]. The goal is to learn a representation space where positive pairs are close to each other

whereas negative ones are far away. They utilize augmented versions of the same instance as posi-

tive pairs and others randomly sampled as negative ones. Some studies have investigated strategies

to select negative pairs [11, 12, 22, 61]. Wu et al. [61] employed a memory bank to store representa-

tion and increase the number of negative samples. In MoCo [12, 22], a memory buffer and momen-

tum encoder are proposed to build large and consistent dictionaries for unsupervised learning.

Recently, pixel-wise contrastive loss has been explored for semi-supervised semantic segmen-

tation [3, 9, 34, 58, 73, 75]. Alonso et al. [3] and Zhou et al. [75] yielded intra-class similarity and

inter-class discrimination when implementing contrastive loss. Wang et al. [58] proposed a fully

supervised contrastive learning approach for semantic segmentation, emphasizing the similarity

of embeddings within the same class and their dissimilarity across different classes. Chaitanya et al.

[9] aimed to maximize intra-class similarity and inter-class separability for the segmentation task,

which is effective for generic multi-class semantic segmentation. Our work specifically focuses on

road extraction from images, which involves a binary classification task and differs from generic

semantic segmentation. Our pixel-wise contrastive loss is specifically designed for the road extrac-

tion task, utilizing positive pairs of regions to capture contextual information and introducing a

negative sampling strategy to identify valid negative region pairs.

The contrastive learning idea has also been exploited for remote sensing imagery classification

in recent years [29, 32]. Jean et al. [29] introduced Tile2Vec, an unsupervised learning algorithm, for

land cover classification and poverty prediction tasks. Their algorithm leverages the observation

that spatially proximate remote sensing image tiles tend to exhibit similar representations, con-

trasting with those farther apart. By utilizing geospatial information as prior knowledge, Tile2Vec

learns vector representations of remote sensing images. On the other hand, Kang et al. [32] pro-

posed an unsupervised deep model for remote sensing imagery classification. They highlighted

the semantic similarities among nearby geospatial locations and the diverse representations of

contrasting land cover types. Although the above-mentioned contrastive learning methods have

achieved promising results, they seldom considered pixel-wise contrastive loss with contextual

information for road extraction tasks.

2.4 Self-training

Self-training is first applied for classification [8, 50, 67, 76] and has been commonly employed

for semantic segmentation with deep learning [13, 19, 27, 45]. These techniques produce
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Fig. 3. Network Architecture. There are two network branches: one for labeled data and the other for unla-

beled data. The supervised branch is trained with a binary cross entropy loss. The unsupervised branch is

trained with the proposed pixel-wise contrastive loss defined over both positive pairs of regions < p1,p2 >

and negative pairs of regions < p1,n > or < p2,n >. The blue and green boxes are two overlapping regions;

their common regions (in yellow) form a positive pair. The red region and one of the yellow regions form a

negative pair.

pseudo-segmented images by training a model with annotated data and utilizing the pseudo

labels to retrain the models iteratively. Different strategies are designed to decide pseudo labels.

For example, Cascante-Bonilla et al. [8] introduced curriculum learning to self-training, selecting

pseudo labels with increasing thresholds. Hung et al. [26] proposed a GAN-based approach by

designing a discriminator to distinguish the predicted confidence maps from the ground-truth seg-

mentation distribution and select high-confident predicted segmentation as pseudo labels. In [13],

cross pseudo supervision (CPS) was proposed, in which the pseudo segmentation labels produced

by one network are exploited to supervise the other with perturbations and vice versa. Unlike

the methods mentioned above, we propose a new iterative labeling strategy for self-training,

which utilizes the proposed contrastive loss to select high-quality pseudo labels and increase

the training dataset gradually. Our method is effective in road extraction with fewer labeled

data.

3 METHOD

3.1 Method Overview

Figure 3 summarizes the sketch of the proposed semi-supervised method for extracting road re-

gions in aerial images. The inputs to our method include a set of labeled images Dl = {(xl ,yl ) |
xl ∈ Xl ,yl ∈ Yl } and a set of unlabeled images Du = {xu | xu ∈ Xu }, where (xl ,yl ) is a pair

of image-label and xu a raw image. The network includes two branches of sub-networks, one for

supervised learning and the other for unsupervised learning. To train the supervised branch, we

apply an encoder-decoder network over each training image xl to extract its feature maps, and

train the network using a binary cross-entropy loss LS .

The unsupervised branch shares the same network backbone as the supervised branch. It takes

as input a raw image and is trained with the proposed contrastive loss function. The loss function

is defined over both positive pairs of images and negative pairs. As Figure 3 illustrates, we crop two

overlapping regions from the same image to form a positive pair. Similarly, two non-overlapping
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Fig. 4. Generation of negative pairs. For each positive pair of regions (green and blue boxes), we find and

crop a non-overlapping region (orange box) from which a set of sub-regions (n1,n2, ...) are sampled and

paired with the positive regions to form negative pairs. The proposed negative sampling algorithm is used

to identify false-negative pairs (dotted box).

regions in the same image will be randomly selected and cropped to form a negative pair. Each

cropped region is associated with a region in the network confidence map. The confidence maps

over positive pairs of regions are expected to be similar, whereas the maps over negative pairs

of regions are expected to be dissimilar. We employ this intuitive expectation to regularize the

training of the network. To measure the similarities between the two confidence maps, we employ

a histogram-based descriptor [16] to account for pixel-wise misalignment. A negative sampling

strategy is incorporated to filter out false-negative samples in contrastive learning. We also develop

an iterative process that employs contrastive loss to identify raw images with high-quality pseudo

labels and retrains the network using both human labels and pseudo labels.

3.2 Pixel-wise Contrastive Loss

We introduce a pixel-wise contrastive loss function to supervise the training of the unsupervised

network branch. This loss is defined over both positive and negative pairs of images. In this context,

each pair of positive images denotes two overlapping regions; a pair of negative samples includes

two image regions that do not overlap with each other. To collect a positive pair, we randomly

select an image region and crop two image patches that enclose the overlapping region. Next, we

select another region that is spatially far away from the above-shared region and pair it with the

previously selected region to form a negative pair. The collected negative pairs might include false

negatives, i.e., two disjoint regions yet sharing similar roadway patterns. We will introduce a sam-

pling algorithm to remove these false-negative pairs. Figure 4 illustrates the process of generating

negative pairs.

Let < p1,p2 > denote a positive pair of image regions, < p1,n > or < p2,n > a negative pair,

sim(p1,p2) returns the similarity between the network outputs of regions p1 and p2. One possible

similarity measure is directly comparing the two network outputs pixel by pixel. However, it

is not applicable here because there are misalignments caused by step-by-step downsampling

network operations and contextual information fusion [25]. Instead, we extract the histogram

of oriented gradients (HOG) from the network output of an image region and calculate the

cosine similarity between HOG descriptors. The histogram-based features can ensure that the
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ALGORITHM 1: Negative Sampling Strategy

Input: A pair of positive regions, pi where i = 1, 2
Input: An image region having no overlap with the positive pair, q
Output: Valid negative samples, Ni where i = 1, 2

1: for i in [1, 2] do

2: N = []

3: j = 1

4: while j ≤ 10 do

5: sample a sub-region nj from the region q to obtain a negative pair < pi ,nj >
6: N .append(nj )
7: j += 1

8: end while

9: Ni ← select 5 negative pairs with the lowest similarity score from N
10: end for

11: return Ni

measurement is invariant against geometric transformations, effective for the misalignment issue.

The contrastive loss is defined as the following:

l (p1,p2,n) =

− log
exp(sim(p1,p2)/τ )

exp(sim(p1,p2)/τ ) +
∑

n exp(sim(p1,n)/τ )

(1)

LC =
∑

<p1,p2,n>

(l (p1,p2,n) + l (p2,p1),n) (2)

where τ is a temperature hyper-parameter [61]. Backpropagation of l (p1,p2,n) is stopped for

p2. Note that each region in the positive pair might be paired with multiple non-overlapping

regions to form different negative pairs. Then, the total semi-supervised loss L can be written

as

L = λ1LS + λ2LC , (3)

where λ1 and λ2 are balancing weights for LS and LC , respectively.

Negative Sampling Strategy. Filtering false-negative samples is a crucial component of the

proposed contrastive learning because there is a high chance for two disjoint regions to have

similar appearances. On the one hand, a large portion of a roadway aerial image might be of

backgrounds; on the other hand, many road instances share similar shapes. Including these false-

negative samples in the contrastive loss function would sacrifice the effectiveness of the training.

Algorithm 1 and Figure 4 describe the proposed negative sampling process. We first apply the

previously trained network to a cropped region that has no overlap with positive pairs to obtain

its confidence map and HOG descriptor. Then, we sample sub-regions from the cropped region

and calculate each negative pair’s cosine similarity sim(). A negative pair with a high similarity

score (or a large contrastive loss) would likely be a false negative. We sample 10 negative pairs and

select 5 with the lowest similarity score.

3.3 Iterative Labeling

We develop an iterative labeling scheme to fully explore the set of unlabeled images and the pro-

posed pixel-wise contrastive learning framework. Our iterative algorithm starts with initially train-

ing the network using both labeled data Dl and unlabeled data Du . Next, we apply the network
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ALGORITHM 2: Iterative labeling

Input: Labeled data Dl

Input: Unlabeled data Du

Input: Number of self-training iteration t
Input: Percentile threshold thr1 (e.g., 80%)

Input: Contrastive loss threshold thr2 (e.g., 4.7)

Output: Labels for self-training [D1, . . . ,Dt−1]

1: f (·) ← train with Dl

2: i = 1

3: while i ≤ t do

4: Di = Dl

5: Rank all the raw images Du and their confidence maps Sigmoid( f (Du )) based on average

confidence scores

6: Dm ← select the top ranked thr1 raw images from Du

7: Rank raw images Dm based on the contrastive loss

8: Ds ← select raw images with contrastive loss smaller than thr2 from Dm as pseudo

labeled samples

9: Di = Di ∪ Ds

10: if i > 1 then

11: Di = Di ∪ (Di−1 \ Di )
12: end if

13: f (·) ← train from scratch with Di

14: i = i + 1

15: end while

16: return [D1, . . . ,Dt−1]

over each raw image in Du to obtain its confidence map. The estimated maps are used as the

pseudo labels and will be used to enlarge the labeled data set Dl in the next iteration. We repeat

the above process multiple times till the network converges. Similar iterative algorithms have been

used in the relevant literature for various image tasks [8, 28, 69]. While being effective, a critical

challenge to these iterative learning schemes is how to filter out low-quality pseudo labels to avoid

model collapse. In this work, we employ the loss function to score pseudo labels and grow the la-

beled dataset. We crop overlapping regions from the pseudo labels to form the positive pair and

use the negative sampling strategy to generate the negative pair. We compute the contrastive loss

of pseudo labels with generated positive and negative pairs.

Algorithm 2 describes the sketch of the proposed iterative labeling process. At the beginning

of the algorithm (t = 1), we select the top thr pseudo labels from Sigmoid( f (Du )) with the high-

est average confidence score and remove the images whose contrastive loss is above an empirical

threshold. The contrastive loss describes how consistent the current network works for a raw im-

age and can be used as a successful measure to select pseudo labels. We set the threshold to be

4.7 in this work. Figure 5 demonstrates some examples of raw images and pseudo labels with low

(high-quality pseudo labels) and high contrastive loss (low-quality pseudo labels). We can combine

these raw images with pseudo labels and the labeled set Dl to train the supervised branch. For

the subsequent self-training (t ≥ 2), we combineDt andDt−1 together for the supervised branch.

Compared with the original self-training with all Sigmoid( f (Du )) for training, our iterative label-

ing selection strategy can increase the quantity and quality of pseudo labels for the supervised

branch and boost the model performance step by step.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 80. Publication date: November 2023.
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Fig. 5. Examples of raw images and pseudo labels with low contrastive loss (high-quality pseudo labels) and

high contrastive loss (low-quality pseudo labels).

3.4 Training Data and Test-Time Augmentation

Training data augmentation (TA) is a common practice to produce training samples for supervised

learning when data are insufficient, but an effective way is sought to produce different pertur-

bations of the same unlabeled image [18, 36, 68, 74]. When training our semi-supervised model,

we employ flipping, rotating, and color jitter augmentation for both supervised and unsupervised

branches.

Test-time augmentation (TTA) contains augmentation, prediction, transformation back, and

merging. For a test image xt , we rotate it by 90◦, 180◦, and 270◦. Then, we predict results based on

both original and augmented images and transform the predicted results back. Towards the end,

we average the four outputs to get the final prediction.

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We apply the proposed semi-supervised approach to the public SpaceNet3 [56] and DeepGlobe

Road [17] datasets and compare it to other alternative semi-supervised methods in the recent

literature.

SpaceNet3. This dataset contains 2780 images. The size of each image is 1300 × 1300, with a

ground resolution of 30 cm/pixel. We remove the images without roads and obtain a subset of 2549

images. The annotations are in the format of line strings for roads. Following [6], we first employ

the Euclidean distance transform along the line strings to get the Gaussian maps and then threshold

the map using a constant of 0.76 to obtain the binary mask, which corresponds to 6–7 meters wide

road. We split the dataset into a subset of 2018 images for training, 100 for validation, and 431 for

testing, following the approach described in [6].

DeepGlobe Road. This dataset includes a total of 6226 satellite images, which are captured over

Thailand, Indonesia, and India, spanning 1632 km2 in ground area. All pixels belong to the road

areas. Each image has a size of 1024×1024 pixels and a ground resolution of 50 cm/pixel. Following

[6, 51], we divide the dataset into 4496 for training, 200 for validation, and 1530 for testing.

4.2 Evaluation Metrics

We use the pixel-based F1-score and road intersection over union (IoU ) to evaluate the model

performance, following the previous works [1, 56]. The model outputs are confidence maps for
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road extraction, and each threshold gives different results of F1 and road IoU. We report the highest

F1 and road IoU as our evaluation metric. Similar evaluation metrics have been widely used in

edge/boundary-related tasks in the computer vision community, such as ODS and OID at best

scales in BSD500 [4, 63]. The motivation is to get the best performance for each model to compare

and avoid evaluation bias, which ends up with different thresholds.

4.3 Implementations

We use U-Net [49] as the backbone network. For the supervised branch, we crop multiple image

regions of 256×256 from each labeled image and use these cropped images to enlarge the training

set. For the unlabeled branch, we first select a region of 256× 256 and draw two outside regions of

384×384. These two larger regions overlap with each other, and their overlapping areas (256×256)

form the positive pairs. To collect negative pairs, we crop a region of 512 × 512 having no overlap

with positive pairs and select negative samples from this region that are perceptually dissimilar

from positive samples. We extract a HOG descriptor from the network output over each region and

measure their distance to prune similar regions. We also augment the cropped images by applying

different transformations, including flipping, rotating, and color jitter augmentations.

We train all the models using a single GTX1080ti GPU with a batch size of 6 for labeled data and 2

for unlabeled data. Adam optimizer is implemented with a weight decay of 0.0001. The supervised

and unsupervised loss weights are set as 1 and 0.1, respectively. There are a total of 100 epochs

for SpaceNet3 and 60 for DeepGlobe Road. We start with a learning rate of 0.0005 with a step

scheduler by a factor of 0.1 at epochs {60, 75} for SpaceNet3 and {30, 40} for DeepGlobe. The first

four and two epochs are trained only with the supervised loss for stabilization for SpaceNet3 and

DeepGlobe, respectively. The temperature hyper-parameter τ is 0.07. The patch size is 8 × 8, and

the bin number is 12 to generate HOG descriptors. The percentile threshold thr1 and contrastive

loss threshold thr2 are 80% and 4.7, respectively, to select pseudo labels for the iterative labeling

process. The supervised baseline model is U-Net trained without TA or TTA. We compare our

model on 1% and 5% of the labeled data of SpaceNet3 and DeepGlobe Road datasets.

4.4 Comparison with State-of-the-art Methods

We apply both the proposed method and other recently published semi-supervised segmentation

methods, includingC3−SemiSeg [75], PC2Seg [73], Cross Pseudo Supervise (CPS) [13], and Cross-

Consistency Training (CCT) [47] over the same datasets and compare their performance. We com-

pared models using the same partition protocols for fairness.

Results on SpaceNet3. Table 1 reports the comparison results of the proposed method and

the other four methods on the SpaceNet3 dataset while using 1% or 5% of the labeled samples. We

include the results of the baseline method for comparison. Besides the proposed iterative labeling

method, we also implement a variant of our method that does not use the iterative labeling. The

comparison in Table 1 suggests that the proposed semi-supervised method with iterative labeling

(IL) achieves the highest performance in both settings and clearly outperforms the other four state-

of-the-art semi-supervised segmentation methods [13, 47, 73, 75]. Moreover, the proposed method

can still outperform other methods without iterative labeling. Note that there are only 20 training

images using 1% labeled data. The proposed method can still work well and even outperforms the

baseline method trained on (5%) labeled data.

Figure 6 further plots the F1 and IoU of both the supervised baseline and the proposed semi-

supervised methods using 1%, 5%, and 100% labeled data. When we apply our method to the fully

supervised setting in which all data are assigned for both supervised and unsupervised training,

our method (F1: 0.7223; IoU : 0.5712) can still beat the baseline (F1: 0.7066; IoU : 0.5578) with an

improvement of 1.57% and 1.34% for F1 and road IoU, respectively.
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Table 1. Performance on the SpaceNet3 Dataset Under

Different Proportions of Labeled Samples

Method
1% (20) 5% (101)

F1 IoU F1 IoU

C3−SemiSeg [75] 0.5448 0.3749 0.5987 0.4279

PC2Seg [73] 0.4788 0.3109 0.5601 0.3924

CPS [13] 0.3475 0.2002 0.5788 0.4037

CCT [47] 0.5785 0.4142 0.6358 0.4722

Sup. Baseline [49] 0.4886 0.3363 0.6052 0.4431

Ours w/o IL 0.6097 0.4480 0.6671 0.5038

Ours with IL 0.6554 0.4900 0.6775 0.5044

Ours w/o IL: our proposed semi-supervised learning of one single

iteration without iterative labeling. Ours with IL: our proposed

semi-supervised learning of multiple iterations of self-training with

iterative labeling.

Fig. 6. Comparison between the supervised baseline model [49] and our proposed approach under varying

proportions (1%, 5%, and 100%) of the labeled data on the SpaceNet3 dataset.

Figure 7 visualizes the results of our method and five other methods, including the supervised

baseline and four state-of-the-art methods. For the images in the first seven rows, our method can

produce much higher-quality results than others. The last three rows also show three challenging

images for which our method did not work well. These images include complicated highways and

partially visible roadways; these patterns did not appear in the training set. Actually, none of the

six learning-based methods can work properly over these three images. One potential solution

is the so-called sample-specific data augmentation method [36]. In our current experiment, we

applied the same set of augmentation operations, including cropping, flipping, rotating, and color

jitter, over every image. A more reasonable augmentation solution is to assess how difficult an

image is regarding the current model, and to produce more augmented samples for these difficult

samples than easy samples. We will explore this direction in future work.

Results on DeepGlobe Road. Table 2 reports the results of different methods over the Deep-

Globe Road dataset. Some examples of results are shown in Figure 8. The recently proposed method

C3−SemiSeg [75] achieves F1 0.6383 while using 1% labeled data, which clearly outperforms other

methods, including the baseline network. Our method with iterative labeling can further improve

its performance with a significant margin of 3.46%. Similar improvements are obtained by the pro-

posed method over other methods while using 5% labeled data. When we apply our method to

the fully supervised setting in which all data are assigned for both supervised and unsupervised

training, our method (F1: 0.7100; IoU : 0.5712) can still beat the baseline (F1: 0.6992; IoU : 0.5577).
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Fig. 7. Comparison results of six different methods on the SpaceNet3 dataset with 1% labeled data. The last

three rows demonstrate some failure cases of our proposed method.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 80. Publication date: November 2023.



80:14 H. Zhang et al.

Table 2. Performance on the DeepGlobe Road Dataset Using 1%

or 5% Labeled Samples

Method
1% (45) 5% (225)

F1 IoU F1 IoU

C3−SemiSeg [75] 0.6383 0.4530 0.6949 0.5232

PC2Seg [73] 0.4693 0.2960 0.5987 0.4189

CPS [13] 0.2751 0.1549 0.5884 0.4079

CCT [47] 0.5475 0.3664 0.6305 0.4552

Sup. Baseline [49] 0.5763 0.3952 0.6800 0.5083

Ours w/o IL 0.6546 0.4745 0.7043 0.5352

Ours with IL 0.6729 0.4956 0.7249 0.5605

Fig. 8. Comparison results of six different methods on the DeepGlobe Road dataset with 1% labeled data.

4.5 Ablation Study

We perform ablation studies to validate the effectiveness of the proposed components on the

SpaceNet3 dataset with 1% (i.e., 20) labeled and 99% (i.e., 1998) unlabeled training data. Table 3

reports the F1−score and road IoU of these methods. The method of ID I represents the supervised

baseline model without training data augmentation (TA), test-time augmentation (TTA), pixel-

wise contrastive loss (PCL), histogram of oriented gradients (HOG), negative sampling (NS), or

self-training (ST).

Effectiveness of Histogram of Oriented Gradients (HOG). Misalignment is a challenge

when working with pixel-wise tasks and calculating between-sample similarities. In this work,

a roadway appears anywhere or at any scale in an image. We employ a histogram-based feature
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Table 3. Ablation Study on the SpaceNet3 Dataset with 1% Labeled Data

Model ID TA TTA Context PCL HOG NS F1 IoU

Supervised

I 0.4886 0.3363

II � 0.5507 0.3856

III � 0.5223 0.3677

IV � � 0.5791 0.4134

Semi-supervised

V � � � � 0.5604 0.4009

VI � � � � � 0.5908 0.4206

VII � � � � � 0.5914 0.4292

VIII � � � � 0.5958 0.4342

IX � � � � � 0.6028 0.4405

X � � � � � 0.5896 0.4194

XI � � � � � � 0.6097 0.4480

TA: training data augmentation; TTA: test-time augmentation; Context: contextual information; PCL: pixel-wise

contrastive loss; HOG: histogram of oriented gradients; NS: negative sampling.

(HOG) to ensure that the contrastive loss is invariant against geometric transformations. In Table 3,

the comparison between Model VIII and IX suggests that the semi-supervised model with HOG

descriptors is superior to that without HOG, improving F1 from 0.5958 to 0.6028 and road IoU from

0.4342 to 0.4405.

Effectiveness of Negative Sampling. The proposed negative sampling method aims to prune

or filter false-negative pairs of samples during training. We evaluate and report the results of the

semi-supervised model with and without negative sampling (NS). Models IX and XI results in

Table 3 show that integrating NS can lead to improved F1 and road IoU.

Effectiveness of Contextual Information. To verify the effectiveness of the contextual infor-

mation on the predictions of overlap regions, we compare the models with and without contextual

information. For the model without contextual information, we crop the same region with different

data augmentations to generate positive pairs for the contrastive loss. The two cropped patches of

the unlabeled image are totally overlapped and have the same contextual information. In Table 3,

the comparison between Models X and XI shows that considering contextual information in the

model can significantly improve F1 by 2.01% and IoU by 2.86%.

Effectiveness of Pixel-wise Contrastive Loss. Our proposed pixel-wise contrastive loss

(PCL), considering contextual information, is performed on the pixel level. It encourages the

network to have similar outputs for positive pairs and different results for negative ones. In

Table 3, the comparisons between Model VIII and Model IV show that utilizing PCL over unsu-

pervised images can lead to a gain of 1.67% in F1 and 2.08% in road IoU while using augmentation

techniques for both testing and training. We observe an even more significant improvement from

the comparisons of Model V and Model I. Using PCL and negative sampling will lead to a gain of

7.18% in F1 and 6.46% in road IoU. These experiments with comparisons indicate that our PCL is

effective for road extraction as it helps to learn more semantic representations for the model and

alleviate the over-fitting issue.

Effectiveness of Iterative Labeling. Table 4 reports how the proposed method works over

iterations. The method called plain ST w/o IL is a naïve implementation of the proposed method

in which the pseudo labels at the previous iterations are directly used as the labeled samples at

the current iteration. When applying this naïve implementation with our semi-supervised model,

we observe that the F1 and road IoU decrease in the second iteration. In contrast, the method

called ST with IL, which uses the proposed iterative labeling strategy, can progressively improve

the F1 and road IoU of our semi-supervised model over the first four iterations and converge at the
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Table 4. Effectiveness of Iterative Labeling on the SpaceNet3

Dataset with 1% Labeled Data

Method t F1 IoU

Supervised baseline with

plain ST w/o IL

0 0.4886 0.3363

1 0.5375 0.3791

2 0.5491 0.3906

3 0.5597 0.3991
Our proposed semi-supervised

with TA, TTA, PCL, HOG, NS, and
plain ST w/o IL

0 0.6097 0.4480

1 0.6399 0.4740

2 0.6368 0.4637

Our proposed semi-supervised

with TA, TTA, PCL, HOG, NS and
ST with IL

0 0.6097 0.4480

1 0.6425 0.4779

2 0.6482 0.4837

3 0.6534 0.4870

4 0.6554 0.4900

5 0.6551 0.4872

ST: self-training; IL: iterative labeling; t : iteration of self-training model.

See text for more details.

fifth iteration. The best performance of our semi-supervised iterative approach on the 1% labeled

SpaceNet3 dataset achieves 0.6551 F1 and 0.4900 road IoU, which are much higher than those of

the supervised baseline model employing plain ST w/o IL. This set of comparisons shows that the

proposed iterative labeling process can effectively prune the noisy data.

In this study, we employ contrastive loss during the iterative labeling process to filter out low-

quality pseudo labels. Our offline experiments show that directly ranking all pseudo-labels based

on their contrastive loss and classification loss can slightly enhance system robustness. In previous

literature, various measures have been introduced to identify and select high-quality pseudo-labels

when learning from raw data. These measures include confidence scores, diversity of selected sam-

ples, and other learning-based metrics. However, finding an optimal combination of these measures

is a non-trivial problem. In this study, we focus exclusively on the proposed pixel-wise construc-

tive loss and empirically demonstrate its effectiveness as a measure for selecting pseudo-labels.

We remain open to exploring different measurement combinations to select high-quality pseudo

labels in future research.

Effectiveness of Training Data and Test-Time Augmentation. As shown in Table 3, the

supervised and semi-supervised models with TA (Model II and Model VII) have better F1 and road

IoU than corresponding models without TA (Model I and Model V). Model III and Model VI with

TTA also perform better than Model I and Model V, respectively. When both TA and TTA are

incorporated together in the supervised Model IV and semi-supervised Model XI, we obtain better

results than using TA or TTA alone. These comparisons suggest that integrating TA, TTA, or both

can significantly improve the model performance of road extraction.

Analysis on the 1% Labeled DeepGlobe Road Dataset. We further validate the effectiveness

of the proposed components on the DeepGlobe Road dataset with 1% (i.e., 45) labeled and 99% (i.e.,

4451) unlabeled data. Table 5 reports the results of multiple implementations of our methods. We

can observe consistent improvements while using TA & TTA, PCL & HOG & NS, ST with IL, or

the combinations. The model incorporating ST with IL achieves the best performance, whose F1

is 9.66% higher and road IoU is 10.04 higher than the baseline method.

Analysis on the 5% Labeled SpaceNet3 Dataset. Table 6 reports the performance of our

model on the SpaceNet3 dataset while using 5% (i.e., 101) labeled and 95% (i.e., 1917) unlabeled

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 80. Publication date: November 2023.



An Iterative Semi-supervised Approach with Pixel-wise Contrastive Loss 80:17

Table 5. Effectiveness of Our Proposed Components on

the DeepGlobe Road Dataset with 1% Labeled Data

TA&
TTA

PCL&
HOG&NS

ST
with IL

F1 IoU

0.6052 0.4431

� 0.6374 0.4736

� 0.6304 0.4676

� � 0.6671 0.5038

� � � 0.6775 0.5044

TA: training data augmentation; TTA: test-time augmentation;

PCL: pixel-wise contrastive loss; HOG: histogram of oriented

gradients; NS: negative sampling; ST: self-training; IL: iterative

labeling.

Table 6. Effectiveness of Our Proposed Components

on the SpaceNet3 Dataset with 5% Labeled Data

TA&
TTA

PCL&
HOG&NS

ST
with IL

F1 IoU

0.5763 0.3952

� 0.6496 0.4696

� 0.5944 0.4132

� � 0.6546 0.4745

� � � 0.6729 0.4956

data. TA & TTA, PCL & HOG & NS, and ST with IL effectively boost model performance, which is

consistent with our previous experimental results obtained from 1% labeled SpaceNet3 data. The

F1 score of our proposed semi-supervised iterative method achieves 0.6774, which outperforms

the result of the supervised model trained with 10% labeled data (0.6295) and is only 2.9% lower

than the supervised model trained over the full dataset (0.7066).

5 CONCLUSION

In this article, we propose an iterative semi-supervised approach for extracting roads in aerial im-

ages. We developed a pixel-wise contrastive loss to force similarity between positive pairs and

dissimilarity for negative pairs. An iterative labeling scheme is employed to fully explore the

knowledge of raw unlabeled images and generate pseudo image labels. Based on the proposed

contrastive loss, a negative sampling strategy is developed to filter false-negative samples. Ex-

tensive experiments on public datasets demonstrate that our method achieves state-of-the-art in

the task of image-based road extraction and outperforms the other semi-supervised segmentation

models. Our method can also be generalized well on different datasets while trained on varying

amounts of labeled data. The developed techniques have broad applications in multimedia com-

puting, including video parsing, image understanding, and classification.
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