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Although survival analysis is known to outperform logistic regression, theoretically and
according to evidence from other disciplines, little is known about how true this is in sit-
uations where the goal is detecting spatial predictors of land change. Furthermore, with
the increasing availability of longitudinal land-change data, evidence is needed on the
relative performance of these two different methods in situations with differing levels
of data abundance. To fill this gap, we generated a pseudo land-change data set using an
agent-based model of residential development in a virtual landscape. This agent-based
model simulated the decisions of homebuyers in choosing residential locations based
on the values of several spatial variables. Pseudo land-change maps, generated by the
agent-based model with different weights on these spatial variables, were exposed to
statistical analysis under the logistic and survival approaches. We evaluated how well
the two approaches could reveal the spatial variables that were used in the agent-based
model and compared the performance of the two methods when land-change data were
collected under different sampling frequencies. Our results suggest that survival anal-
ysis outperforms logistic regression in detecting the variables that were included in
agent decisions, largely because it takes into account time-dependent variables. Also,
this research suggests that various properties of land-change processes (like amount of
developed area and access of agents to information) affect the relative performance of
these statistical approaches aimed at uncovering land-change predictor variables.

Keywords: land-change science; survival analysis; logistic regression; space-time
analysis; pseudo data set; agent-based model

1. Introduction

Most land-change studies involve two steps: detecting changes in land use or land cover and
relating these changes to some set of predictive or causal factors (Lambin and Geist 2006).
Detecting land changes is by no means simple, but advances in the acquisition, processing,
and interpretation of remote sensing imagery over the past two decades have made this task
less daunting (Green et al. 1994, Lunetta et al. 2006, Turner et al. 2007). In comparison,
however, explaining the observed changes, that is, identifying spatial predictor variables
and their relative contributions, still remains challenging. Too many plausible predictor
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2 N. Wang et al.

variables exist, and their effects vary greatly over space, time, and specific context (Geist
and Lambin 2002). In recent years, impressive efforts have been made to integrate remote
sensing imagery and socioeconomic data (Liverman 1998). These integrated data sets hold
great promise for identifying predictors of land change, provided appropriate analytical
methods are applied to them.

Turner et al. (1996) were among the first to suggest using logistic regression for this
task. Because logistic regression is more appropriate for use with categorical outcomes,
like land-cover classes, than ordinary least square regression (Lambin 1997, Overmars and
Verburg 2005), it soon became widespread in land-change science (Serneels and Lambin
2001, Aspinall 2004, Geist and Lambin 2004, Huang et al. 2007, Wyman and Stein 2010).
For urban applications, Wu and Yeh (1997) analyzed the impact of land reform policy on
Chinese urban growth. Their logistic model gave very different estimates (sign and magni-
tude) on the same land-change predictor variables, suggesting the structural difference in
urban development before and after the reform. Cheng and Masser (2003) continued this
effort by applying logistic regression, coupled with satellite imagery of 1993 and 2000, and
GIS, on Wuhan, a transportation hub in central China. Their model revealed the fading role
of master planning in urban development, with the rise of decentralized decision making.
In sum, results of these analyses have contributed considerably to the current knowledge
and understanding of variables associated with various land-change outcomes.

The growing availability of land-change data, often based on satellite imagery, over
multiple time intervals and longer time extents (Mertens and Lambin 2000, Vagen 2006,
Zhou et al. 2008), presents a challenge for use of logistic regression. When analyzing longi-
tudinal land-change data, logistic regression does not effectively use prior-change temporal
information. In other words, a change occurring at the beginning of the observation extent
is weighed the same as one occurring toward the end of the observation extent. As a result,
the significance of a variable’s contribution may be very dependent upon the length of
the observation extent. To circumvent this challenge, a recent study (Huang et al. 2009)
has introduced an exponential smoothing technique on three logistic models that were
developed on three consecutive time periods (1984–1992, 1992–1997, and 1997–2002).
The smoothing function assigned relatively higher weights on more recent observations
than older ones. This multi-temporal logistic model effectively predicts land-use change in
New Castle County, Delaware, yet the use of parameters in the smooth function and the
relationship to the land-change time remain unclear and are subject to uncertainty.

Survival analysis provides an alternative analytical framework for dealing with longi-
tudinal data. Originating in biomedical research, this framework soon gained popularity
in many other disciplines where the timing of events is of concern, for example, machine
failure (Cox and Oakes 1984, Mudholkar et al. 1995, Klein and Moeschberger 1997) and
divorce (Smith and Zick 1994, Yashin et al. 1995, Allison 2001, Lee and Wang 2003). This
framework evaluates causative contributions to the occurrence and timing of the event
of interest. Survival analysis has also found its way to land-change science (Irwin and
Geoghegan 2001, An et al. 2011), where it has been demonstrated as a valuable approach
to revealing the varying effects of predictor variables on land changes over time.

In theory, survival analysis should outperform logistic regression, as it uses informa-
tion more fully. Mathematical analysis has shown that survival analysis is superior when the
duration is long and changes are frequent (Green and Symons 1983). This theoretical con-
clusion, though it has been verified in fields such as medical science (Green and Symons
1983), is not fully tested in application of land-change analysis. Land-change science dif-
fers from other fields in its explicit incorporation of spatial and temporal complexities
in land-change processes. Both survival analysis and logistic regression have strength in
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modeling individual behaviors, but as land is inherently continuous, how to define the indi-
vidual land unit becomes a problem (An and Brown 2008). Two data models are most
common in GIS applications: the raster and vector models. The raster model simplifies the
space as a grid of cells, which provides convenience for data handling but short in realistic
mapping of natural entities such as mountains and lakes. The vector model, on the other
hand, represents a space consisting of recognizable objects, following their natural shapes,
for example, lakeshores or coastlines. Recent application of high resolution remote sens-
ing imagery has moved towards reconciling this choice: on the one hand, satellite imagery
can be easily converted to raster data; on the other hand, pixels in high resolution image
are fine enough to capture changes in parcel lots where land-change decisions are usually
made. In addition to spatial complexity, many characteristics of land, for example, soil
fertility and population density, may change over time, which may directly or indirectly
influence the direction or rate of land change, adding another layer of temporal complex-
ity. Data of higher temporal resolution allow the measure of these dynamic characteristics,
but we also need metrics to associate them to land-change events. Survival analysis holds
promise for this aspect because it can accommodate explanatory variables with varying
values over time (Allison 2001), which may help to uncover some mechanisms of land
change that could not be revealed by other statistical models.

However, it is important to note that each statistical framework involves a different set
of assumptions. Survival analysis is relatively more complex than logistic regression and
has higher requirements on the time resolution of data. As such, the relative performance
of each statistical framework needs to be compared under different circumstances as a way
to improve their use in analyses of land-change processes.

After reviewing literature on logistic regression and survival analysis with consid-
erations on model choice, we pursued the following specific research question in this
study: How much and under what circumstances does survival analysis perform better than
logistic regression in detecting predictors of land change?

To answer this question, we evaluated and compared the performances of statistical
models estimated under these two frameworks using data on land-change outcomes whose
underlying mechanisms are well known. The mechanisms were specified in an agent-based
model of residential growth. We varied the magnitude of land changes, the level of deter-
minism in the agent decisions, the temporal frequency of sampling for the land-change
outcomes, and the time-varying predictor variables. Statistical model parameters retrieved
by the different statistical methods were compared with the known predictor variables used
in the agent-based model to test the accuracy of the different statistical methods under
different modeling and sampling conditions.

We limited land changes in the model to those from non-urban use to urban use, which
is mostly irreversible (except over very long time period), as a case study. We acknowledge
that there are other types of land changes that are reversible, for example, between pasture
and forest. We concentrated our research on land-use change from non-urban to urban,
however, because (1) the non-urban to urban change is common and important in nearly all
countries (Angel et al. 2005) and (2) methodologically, it is fundamental, as a reversible
land change can be decomposed into a chain of short irreversible changes. Nonetheless, the
results of our comparison do not directly apply to reversible land changes. It is important to
note that such changes are particularly complicating, and our survival analysis framework
would need to be modified to address irreversible changes, which goes beyond the scope
of this study.

Section 2 reviews these two statistical frameworks and their variants. After impor-
tant applied situations are reviewed, the research methods and experimental design are
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4 N. Wang et al.

described in Sections 3 and 4. Results are presented in Section 5, and Sections 6 and
7 discuss implications and conclusions.

2. Regression analysis

Regression analysis is commonly used when measuring correlations between a dependent
or response variable and some number of covariates. The distinction between statistical
correlation and causation has been elaborated elsewhere (Holland 1986) and must always
be considered when regression is used to evaluate causal relationships. In the context of
land-change science, land changes are widely understood to result from land managers’
decisions (Briassoulis 2000, Geist and Lambin 2004, Turner et al. 2007), and factors that
stimulate or constrain land managers’ decisions can be considered as land-change predic-
tors. From a pool of potential predictor variables that are informed by theories (Angelsen
and Kaimowitz 1999, Irwin and Geoghegan 2001, Walker 2004) and experts’ opinions,
those showing significant correlations to land-change events (P-value < 0.05) are often
identified as the predictors accounting for land change. Because most predictor vari-
ables are spatial in nature, effects of spatial autocorrelation should be taken into account,
otherwise P-values can be inflated and false conclusions may arise.

2.1. Logistic regression

Logistic regression was originally used in modeling binary outcomes with a suite of
explanatory variables, for example, a customer’s purchase decision of a product may relate
to product characteristics or demographic, social, and geographic factors associated with
the individual. For land-change science, researchers aim to associate binary land status,
for example, changed or not, with a suite of biophysical or socioeconomic variables to
explain land-change processes. Because of the categorical nature of the outcomes, logistic
regression was easily adapted for studying predictor variables in land-change applications
(Coomes et al. 2000, Cheng and Masser 2003, Huang et al. 2007, 2009, López and Sierra
2010, Wyman and Stein 2010). In particular, the maximum likelihood estimation allows
modelers to evaluate influences from categorical covariates, for example, gender or ethnic-
ity (Overmars and Verburg 2005), which has improved the analytical power of regression
in land-change applications.

The most common form of logistic regression uses the logit link function (Equation 1),
where Pi is the land-change probability of location i, β0 is the intercept, and X 1 to Xk are k
covariates (i.e., predictors variables) that help explain land status (denoted as Xki for value
at location i), which can be numerical or categorical. Note all variables are italic and same
hereafter.

Logit (Pi) = β0 + β1X1i + β2X2i + . . . + βkXki (1)

Despite many advantages, logistic regression suffers an important difficulty for modeling
processes with multiple time measures. If both land types and covariates change values
over time, logistic regression has to use either the value at one time or the average over
time, which results in loss of information and reduction in degrees of freedom (An and
Brown 2008)

An alternative form of logistic regression, the survey logistic model (‘survey’ model
hereafter) uses piecewise data restructuring (Appendix A). Instead of one probability for
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each observation or location, which might be thought of as parcels or pixels in the context
of land change, each location can have multiple probabilities, determined by the number
of ‘piecewise’ periods. A location–period probability Pij is defined as the probability that
location i experiences land change at period j. This Pij is linked to a period-specific inter-
cept β0j and covariates X 1 through Xk of their values at location i and period j (denoted
as Xkij in Equation 2). Please note that covariate Xkij may vary over periods. It is called
a survey model because it can group observations from the same unit (e.g., location or
household) into a cluster, a technique often used to deal with correlations in survey data
(Singer and Willett 2003) and in a similar manner to piecewise longitudinal data. Because
the survey model uses the latest values of predictor variables of every period, it can handle
time-dependent covariates.

Logit (Pij) = β0j + β1X1ij + β2X2ij + . . . + βkXkij (2)

2.2. Survival analysis

Survival analysis is a collection of methods explicitly dealing with the occurrence and tim-
ing of events. As a framework specialized for event data, survival analysis is well suited to
handle three types of temporal complexities. First, survival analysis quantifies the poten-
tial risk of an event using a ‘hazard’ metric. This hazard metric depends on not only the
number of events occurred but also their timing. For example, large numbers of events or
early events correspond to higher hazard and vice versa. So events at different time points
are weighed differently.

Second, survival analysis not only includes samples in which events take place within
the observation extent, but also samples that experience events of interest before or after
the observation extent. The latter two cases are called samples censored at left and right,
respectively. Sometimes survival analysis can also include interval censored data, where
samples have events within an interval, but the exact times are unknown.

Third, survival analysis allows for covariates with time-varying values, that is, time-
dependent covariates. For example, the population density of an area may increase and
decrease over time. Survival analysis uses the updated population density to estimate the
hazard of a location in that area.

In sum, these features allow survival analysis to use more temporal information, min-
imizing uncertainties in the estimation process. As such, survival analysis has gained
attention in land-change science (Irwin and Bockstael 2004, Iovanna and Vance 2007, An
and Brown 2008, An et al. 2011). It is worth noting, however, that survival analysis is
predominantly applied to study death or other irreversible processes. Although many land
changes are irreversible, some are reversible, which may present limits to the applicability
of survival analysis.

Interpretation of survival models is similar to logistic regression, for example, the eval-
uation of significance of covariates, except (1) the dependent variable is hazard instead of
probability and (2) intercept h0(t)can be a function of time (Equation 3).

Log hi(t) = Log h0(t) + β1X1i(t) + β2X2i(t) + . . . + βkXki(t) (3)

where hi(t) is the hazard of location i at time t, h0(t) is the baseline hazard shared by all
locations, and Xk is the kth covariate.
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6 N. Wang et al.

In survival analysis, the form of the intercept function Log h0(t) is usually difficult
to specify. There are generally two ways to solve this problem: parametrically using a
piecewise exponential model (Allison 2001) and semi-parametrically using the Cox pro-
portional hazard (PH) model (Cox 1972). The piecewise exponential model (‘piecewise’
model hereafter) breaks the entire study time extent into a certain number of periods and
approximates the intercept in period j to a constant β0j (Equation 4). When periods are suf-
ficiently short, this approximation is quite reasonable. The Cox PH model (‘Cox’ model
hereafter), in comparison, circumvents the task of specifying the intercept function by
dividing hazards of early events over hazards of later events. Because all hazards share the
same intercept function, it cancels out. As such, coefficients β1 to βk are directly estimated
from hazard ratios. For more details, please refer to Allison (2001).

Log hi(t) = β0j + β1X1ij + β2X2ij + . . . + βkXkij (4)

where j = 1,2,. . .J , J is the number of periods. Xkij is the value of nth predictor at location
i in period j (note that Xkij may have different values over periods). hi(t) is the hazard of
location i at time t.

In sum, two analytical frameworks in four variants were examined (Table 1). Table 1
also lists the assumptions, data distributions, and calibration algorithms of these statistical
methods.

3. Model selection

As in any statistical analysis, selection of model form is critical in land-change science
(Agarwal et al. 2002, Parker et al. 2003, Lambin and Geist 2006), yet systematic explo-
rations of the behaviors and suitabilities of different model forms have not been done
adequately (Turner et al. 2001). Models are instruments of inquiry for specific purposes.
So the appropriateness of a model is first evaluated by whether it serves the research pur-
pose, in our case to identify land-change predictors. After the purpose is clear, we need to

Table 1. Summary of statistical models examined in this study.

Logistic Survival

Model Logit Survey Cox Piecewise

Response variable
distribution

Binary or discrete Discrete and/or continuous

Link function Logit function Hazard function
Independent variable

distribution
Continuous and

categority, okay on
non-normality

Continuous and categority, okay on
non-normality

Time-varying independent
variable?

No Yes Yes Yes

Intercept Constant Piecewise Canceled Piecewise
Assumption asymptote asymptote PH assumption constant interval
Calibration algorithm MLE MLE P-MLE MLE
Diagnostic methods ROC, deviance,

goodness-of-fit,
generalized R2

Generalized R2, schoenfeld residual,
deviance, martingale residual
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consider a number of factors, such as assumptions, temporal data completeness, and levels
of complexity (Allison 2001, Harrell 2001).

First, all models make assumptions to provide simplified representations of the real
world. Statistical models function properly only when the assumptions are good approx-
imations of the situations represented in the data. The Cox model, for example, assumes
that covariates (i.e., predictor variables) exert constant influences on hazards over time,
a.k.a. the PH assumption (Singer and Willett 2003). The piecewise model assumes con-
stant effects within each time period. These assumptions may be violated in the case of
rapid land-change processes. For example, in a competitive land market, land desirability
(or hazard) would increase over time as land resource is exhausted. In that way, covariates’
effects on land desirability inflate rapidly with time, violating the PH assumption.

Second, different models differ in whether they handle time discretely or continuously.
However, as the discrete time intervals shrink, it is not always clear when to switch to
a continuous-time model. As land-change science shifts to interest in and availability of
fine temporal resolution data, we need to know when survival analysis will produce better
results.

Third, land changes occur within complex socio-ecological systems. Modelers have to
strike a balance between taking adequate account of system complexity on one the hand
and seeking an explicable, parsimonious model on the other. Agarwal et al. (2002) outlined
three dimensions of complexity for socio-ecological systems: spatial, temporal, and human
decision-making. Specific modeling approaches are often strong at modeling complexity
in one dimension, but weak in others. So model selection depends upon the dimension(s)
of complexity that modelers intend to address.

4. Methods

We used a diverse set of land-change conditions to test alternative statistical models.
We adopted a novel computational approach as follows (Figure 1). With a specific set of
variables and parameters, we (1) simulated a land-change process, (2) sampled the data that
resulted from that process spatially and temporally following specific rules, (3) exposed the
sampled data to statistical models of interest, and (4) evaluated those models by compar-
ing their coefficients to the actual parameters we programmed for a given simulation. This
evaluation procedure was repeated 1000 times over different model variables and parameter
values, both selected by the Monte Carlo technique.

4.1. Simulation approach

To evaluate the performance of statistical models under a range of conditions, we sim-
ulated those conditions by using a Monte Carlo technique to generate results from an
agent-based model of LUCC under a sample of parameter combinations. We generated
data through simulation, as opposed to empirically, for three reasons. First, a simulated
data set minimizes uncertainties in model assessment, which often arise when assessing
statistical methods with real data because it is possible only to hypothesize about what
are the underlying mechanisms by using various theories, experts’ opinions, and statistical
evaluation methods. It is not possible to know for certain, or to manipulate with experi-
mental control, the underlying mechanisms generating a real-world data set. However, by
using a simulation approach, the underlying mechanisms, variables, and parameters are
completely known and the ability of statistical models to recover them can be accurately
assessed (Hirzel et al. 2001).
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8 N. Wang et al.

Figure 1. Steps involved in evaluation of statistical results in the context of each land-change
process.

Second, comparing methods using empirical case study data, as has been done in pre-
vious work (Malanson 2005, An and Brown 2008, Pontius et al. 2008), limits the applied
situations under which the methods can be explored. Different land-change processes
involve different predictor variables (An and Brown 2008, Rindfuss et al. 2008, An et al.
2011), changing at different speeds (Lambin and Geist 2006) and involving different levels
of information access by land managers and users (Manson 2006). These factors lead to
diverse land-change pathways. Constructing an empirical data set that represents a wide
range of pathways is very difficult, but relatively easy for a simulation data set where alter-
ation of the simulation program’s initial parameters produces a diverse set of pathways
(Clarke et al. 2007, Rindfuss et al. 2007). As such, we can map the relative performance
of each statistical technique across applied situations.

Third, the simulation approach enables full control of data production and ensures data
completeness (Neel et al. 2004, Epperson et al. 2010). Data completeness refers to the
resolution and extent of data coverage. It is a key factor in model selection (Harrell 2001),
and it is often limited spatially and temporally in real data sets. To study the sensitivity of
statistical models to these kinds of limits, we test models on data sets sampled at different
frequencies.

There is a risk that virtual land-change processes generated by a certain simulation pro-
gram may lack generality, limiting range of conditions under which conclusions about the
efficacy of statistical methods may apply. In this study, we replicated all our experiments
using a second simulation program (Ligmann-Zielinska and Sun 2010). This agent-based
modeling (ABM) program is a simplified implementation of a residential development
process, focusing on site suitability assessment and investment decisions. Because of
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space limit, replication details and results are presented in Appendix B and in online
supplementary document.

4.2. Simulation model

Developed by the Spatial Land Use Change and Ecological Effects (SLUCE)
project (http://www.cscs.umich.edu/sluce/ ), the SOME (SLUCE’s Original Model for
Experimentation) model was selected for our study because of its parsimonious represen-
tation of land dynamics using ABM techniques (Brown et al. 2005). ABM is a category
of computational models that directly simulates the behaviors of individual agents (Parker
et al. 2003), where agents act autonomously in the course of simulation, following rules
designed by modelers.

SOME consists of three primary parts: a virtual landscape, a group of agents repre-
senting homebuyers, and their behavior rules. The land market is simplified by considering
demand only, while the supply of homes always meets demand. The landscape in SOME
is a lattice of cells of equal size. Each homebuyer acquires one and only one cell, which is
then converted to residence, resulting in land-use change. The global land-use change pat-
tern is a consequence of location decisions by a sequence of homebuyers. Homebuyers
evaluate cells based on a utility function ux,y(t) (Equation 5), where x and y are coor-
dinates of a given cell and select from a pool of candidate cells the one with highest
utility.

ux,y(t) = (AQx,y(t))αAQ × (1/SCx,y(t))αSC × (1/Wx,y)αW (5)

It is not possible to include all land-change driving forces in any given simulation. For
simplicity, we included three potential variables in utility function, aesthetic quality (AQ),
distance to service center (SC), and distance to water (W ). The influences by these vari-
ables are adjusted by αAQ, αSC , and αW , whose values we alternate between 0 and 1 for
these experiments. We assumed a lake on the left border of the landscape, so W is the
Euclidean distance from the border. SC is the Euclidean distance to the nearest service
center. Initially, we place a service facility at the center of the landscape. As the simula-
tion continues, a new service facility is added to the landscape for each additional set of
100 homebuyers; the location of the service facility is near the location chosen by the last
homebuyer. This process continues until a certain proportion of the landscape is occupied
or a specified number of time steps has passed. The AQ value is derived from a predeter-
mined 121 by 121 random map of AQ with positive spatial autocorrelation (Figure 2). This
positively autocorrelated map was generated by (1) creating 100 random points, each with
a random value, (2) applying a kriging interpolation on those points to smooth the surface,
and (3) dissecting a 121 by 121 grid from the virtual terrain. Developments (residents and
service centers) at nearby locations, defined by a 3 × 3 window around each cell, nega-
tively affect the AQ value of that cell by a constant fraction each time a new development
is created. For more information about SOME, please refer to An et al. (2005) and Brown
et al. (2005).

We chose AQ, SC, and W for the following reasons. First, they represent biophysical
and socioeconomic variables, two general categories most common in land-change pro-
cesses. Second, they possess a wide range of time variability: W has a fixed value over
time, with development, AQ, and SC decrease over time. Predictor variables from the real
world would mostly fall into this range. Figure 3a, b, and c shows how land-change patterns
are affected by AQ, SC, and W , respectively.
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Figure 2. Virtual landscape of aesthetic quality considering spatial autocorrelation.

Figure 3. Land-change patterns created when agents consider only (a) aesthetic quality (AQ), (b)
distance to service center (SC) or (c) distance to water (W ) in their utility calculation.

4.3. Experimental procedures

To learn the relative performance of statistical models, we tested them each for a wide
range of land-change conditions. Theory and applications in other domains show that sur-
vival analysis outperforms logistic regression, so an experiment over all conditions should
reproduce this finding. Further, an examination of variations between conditions would
inform us of the relative performance of each method in different application situations.
In particular, land-change conditions are simulated as follows.

First, we ran the model with each predictor turned on (α = 1) and off (α = 0), respec-
tively, resulting in eight conditions, for example, all on or off, one on and the other two off,
or one off and the other two on. This approach is to simulate the challenge in identifying
effective variables from a pool of potential ones (Hersperger and Bürgi 2009).

In addition, we selected two parameters out of a dozen from SOME and swept all
values over their ranges. The first parameter, called numresidents, controls the amount of
land change that the model produces by determining how many residents enter. For every
simulation step, the same number of residents (numresidents) enters the landscape. When
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numresidents is high, more land is developed at every step, so there will be more changes
across space and over time. The second parameter, called numtests, controls the number of
candidate cells that a homebuyer evaluates when searching the landscape. High numtests
implies high level of access to information about available land. Candidate cells are drawn
randomly, in attempt to represent realistic conditions of personal preference, institutions,
and other constraints on access to land information. High numtests reduces process ran-
domness, resulting in more deterministic spatial patterns and temporal dynamics of land
change. On the contrary, low numtests results in stochastic development patterns in space
and time. We acknowledge that in real world, there may be more land-change pathways
that cannot be controlled by these two parameters. However, we would like to choose them
because (1) they determine the quantity and spatial distribution of land change (Figure 4)
and (2) they affect the validity of some statistical assumptions (e.g., PH assumption in the
Cox model) when their values go to extremes.

We used the Monte Carlo technique to produce land-change conditions from a large
number of possibilities (Table 2). Because numtests and numresidents are continuous mea-
sures, we grouped their values for analysis into a priori ranges, determined through a
sensitivity analysis, and uniformly sampled within each range (Figure 4). We sampled
1000 specific land-change conditions, from the full set of possible parameter combinations,
on our workstation (Dell Precision T5400 Intel Xeon 3.16 GHz Qual-core 16G memory).

4.4. Space–time sampling

Mapped results from the above land-change simulations were sampled spatially and tem-
porally. A combined sampling scheme of systematic and random sampling (Cheng and
Masser 2003, Luo and Wei 2009) was adopted to minimize autocorrelation while main-
taining the representativeness of samples. We tested the residuals of regression analysis
and found that as the sample size decreased from 20% to 5%, Moran’s I decreased from
0.23 (z-score = 4.02, positive autocorrelation) to 0.027 (z-score = 1.46, no autocorre-
lation). Also, 5% sampling at different time points maintained a Moran’s I of less than
0.1, with z-score <1.96. As such, we kept sampling at 5% by the given sampling scheme
throughout the research. All attributes of those cells were saved: their development status,
values of aesthetic quality, distance to service center, and distance to water at each specific
time point.

To explore the effects of temporal resolution for sampling, five different sampling fre-
quencies (expressed in number of steps between two consecutive samples) were used: 10,
20, 30, 40, and 50, given 200 time steps in total. Though we were able to collect simu-
lation data at each time step, it would make more sense to test model performance when
data are collected less frequently, for example, every 10 steps up to every 50 steps. In the
real world, it is often difficult to collect historical data of land use at a yearly basis, so the
test of models at coarser temporal resolutions holds more importance. All models were
assessed at highest frequency first (i.e., every 10 steps), and the effect of frequency on the
performance of the statistical analyses was assessed as we sampled less frequently.

Sampled data were used as input to the statistical models. With the exception of the
logit model, which only needed data at two time points, usually the start and the end, all
statistical analyses used data at every sampled time point.

4.5. Implementation of statistical models

Our statistical models were implemented in SAS (http://www.sas.com/ ). To avoid software
bias, analyses on the same data sets were replicated in R (http://www.r-project.org/ ) and
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12 N. Wang et al.

Figure 4. Illustration of nine distinctive parameter combinations by sweeping simulation param-
eters numtests and numresidents, with SC as the only driver. We adopted Monte Carlo technique
to evenly explore combination (a) through (i). (a) low numtests and low numresidents; (b) medium
numtests and low numresidents; (c) high numtests and low numresidents; (d) medium numtests and
low numresidents; (e) medium numtests and medium numresidents; (f) medium numtests and high
numresidents; (g) high numtests and low numresidents; (h) high numtests and medium numresidents;
(i) high numtests and high numresidents.

MATLAB (http://www.mathworks.com/ ). All statistical models were specified in their
original forms, that is, no interaction terms introduced (Appendix C), which is consistent
with the utility function (Equation 5).

4.6. Evaluation

Finally, the accuracy of the resulting statistical models was assessed by comparing the
resultant coefficients to the parameters in the agent-based models. We set up two standards
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Table 2. Parameter values used in sampling land-change conditions for simulation.
These values are uniformly sampled in 1000 Monte Carlo experiments.

Parameter Possible values

AQ on, off
SC on, off
W on, off
Numtests (information access) low ( <0.1% off landscape)

medium ( >0.1%, but
<1%) high ( >1%)

Numresidents (development percentage) low ( <10% of landscape)
medium ( >10%, but
<75%) high ( >75%)

for assessing the statistical models. A model was considered partially successful if the
contribution of one potential predictor variable was correctly detected, that is, it shows sta-
tistical significance (P-value < 0.05) when the corresponding factor is turned ‘on’ (α in
Equation 5 equals ‘1’) or it shows statistical insignificance (P-value > 0.05) when the cor-
responding factor is turned ‘off’ (α equals ‘0’). A model was considered fully successful if
all predictor variables were correctly detected. The rates of partial and full success usually
turned out to be the same in our experiments, so we report only the full success rate, except
for the section on time-dependent variables and in Figure 6, where the partial success rate
was used.

5. Result

5.1. Overall performance

Of the 1000 Monte Carlo experiments, the piecewise model achieved the highest (full)
success rate (Figure 5). The Cox model, a variant of survival analysis, received the second
highest success rate. No logistic model had a success rate above 40%.

Figure 5. Overall full success rates of the different statistical models, after 1000 Monte Carlo
experiments.
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Figure 6. The relative partial success rates for different models on the time-independent variable
(W ) and the time-dependent variables (AQ and SC).

Besides the success rate, logistic regressions were diagnosed by statistical indicators,
including over-dispersion, lack of fit, and Receiver Operating Characteristic (ROC) curve.
No over-dispersion was found (P-value = 0.99 for deviance rejected the over-dispersion
hypothesis) in the response variable, and logistic models showed good fit to data from tests
on ROC (average = 0.92, SD = 0.16) and Hosmer and Lemeshow goodness-of-fit (P-value
= 0.91, where goodness-of-fit is rejected when P-value < 0.05). Still, different statistical
indicators could reveal different aspects of the model, and the success rate proposed by us
presented some new information.

This Monte Carlo result helps us understand how survival analysis performs relative
to logistic regression. However, to understand the application situations over which each
statistical model is effective, we need to further explore the results of 1000 experiments.

5.2. Time-dependent and -independent variables

Different land-change predictors show different levels of temporal variability, that is, some
predictors (e.g., distance to water) have fixed values over time, while others (e.g., distance
to service center and aesthetic quality) change values with land developments. In general,
it is more difficult to measure the effects of time-dependent predictors. However, it is com-
monplace to have time-dependent predictors in land-change process models, for example,
population density.

Using the partial success rates, we evaluated every statistical model for success in
detecting the importance of each variable (Figure 6). All statistical models performed better
in detecting the time-independent variable, W , than in detecting time-dependent variables,
SC and AQ (except in the Cox model, AQ has higher success rate). The success rate for
W ranges from a high value of 94%, for the piecewise model, to a low value of 82%, for
the logit model. Time-dependent variables were more difficult to detect with success rate
ranging from 88% to 54%.

While success rates for detecting the time-independent variables and time-dependent
variables were different among all statistical models, the differences were larger for the
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logistic models. The survey model had the largest difference (41%) and the logit model
the second largest (30%). In contrast, the differences for two survival models were much
lower (12% for the Cox model and 9% for the piecewise model). This indicates a greater
consistency in model performance for the survival models compared to the logistic models.

5.3. Development percentage and information access

Monte Carlo experiments over nine different combinations of values of the two continu-
ous parameters, numresidents and numtests in Figure 4, revealed considerable variability in
full success rates (Figure 7). The piecewise model outperformed other models for almost
every combination, except in combination e, where the logit model performed equally well.
Also, the piecewise model did not show much variability across different parameter combi-
nations, indicating that it is a robust model for dealing with various land-change situations.

The logit model performed well when the development percentage was at medium level
(e.g., combinations b, e, and h in Figure 7), but worse when the development percent-
age was low or high. This finding is consistent with literature (Cramer 1999, King and
Zeng 2001), in which extreme binary ratios, that is, data dominated by 1’s or 0’s, deterio-
rates model performance. In the context of land change, situations such as rare changes or
ubiquitous changes are not appropriate for the logit model.

In theory, high information access would pose a challenge to the PH assumption of
the Cox model, since high information access leads to more competition for the same land
parcels and, therefore, scarce land resources. As such, the effects of covariates on land
attractiveness would appear to increase over time, which challenges the PH assumption
that covariates hold constant effects over time. This challenge, however, does not produce
serious bias according to our results. The Cox model maintains high success rate (>65%)
in situations with high information access, unless the development percentage is also high
(success rate = 55% at combination i).

5.4. Sampling frequency

Sampling frequency had an impact on the Cox, piecewise, and survey model and no impact
on the logit model, which only uses data at two times (one at the beginning of the run and
one at the end). Although the sampling frequency has a direct effect on the piecewise model
and the survey models, by determining into how many ‘pieces’ the longitudinal data will
be segmented, the effect on the Cox model is less obvious, in that it affects the calculation
of hazard. Nonetheless, the general effect on the success rate is the same: because at higher

Figure 7. Full success rates of statistical models for each combination of development percentage
(numresidents) and information access (numtests).
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16 N. Wang et al.

Figure 8. The impacts of sampling frequency on full success rates.

frequencies, more temporal information is retained, statistical models are more likely to
detect the corresponding land-change variables, whereas at lower frequencies they are less
likely to detect variables (Figure 8). All models except the logit model performed better
when the sampling frequency was higher, that is, more samples over time, because more
information is used.

6. Discussion

This study used simulation data to investigate the performance of survival analysis and
logistic regression in different applied situations. This simulation approach provided us the
convenience to preset predictors of land change and test if they are reflected in statistical
results. Also, it could span a wide range of land-change conditions, making it possible
to evaluate statistical methods in different situations and in the future to explore their
application domains.

In detecting spatial predictors of land change, our experiments with simulated data
have shown that survival analysis consistently outperformed logistic regression. This find-
ing conforms to theory, corroborating the usefulness of our simulation approach. Among
many survival models, the piecewise model has better revealed the role of spatial predictor
variables. Full use of information and less violation to model assumptions may explain
why the piecewise model performed the best. Among logistic models, the logit model was
better than the survey model, which may be explained by the severe imbalance between ‘0’
and ‘1’ in piecewise data (see below).

More importantly, we explored the relative performance of the two methods in dif-
ferent application situations regarding temporal characteristics of effective predictors, the
percentage of development, the level of information access, and data completeness. All
these factors could impose challenges to the task of detecting predictor variables, limiting
the application situations of statistical models.
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One important temporal complexity in land-change science is the changing characteris-
tics of some environmental factors over time or time-dependent variables. Survival models
are advantageous in detecting time-dependent variables, that is, where the value of a pre-
dictor variable changes over time (Allison 2001, An and Brown 2008). Survival models
associate changes in land hazards to changing values of time-dependent variables, so esti-
mate accurately the effects of these variables. Logistic models overlook time variability
of variables, so when time-dependent variables are present, they are prone to erroneous
estimates.

Logistic models did not perform well when the amount of development was very low
(<10%) or very high (>75%). In fact, logistic models require balanced binary values,
that is, similar numbers of ‘0’ and ‘1’ (Cramer 1999, King and Zeng 2001, Heinze and
Schemper 2002, Fletcher et al. 2005). This finding has important implications for land-
change studies. Many land-change cases are either very slow, for example, established
urban areas in developed countries, or very fast, for example, deforestation in frontiers.
These situations may lead to unbalanced land outcomes that pose challenges to logistic
models. Cheng and Masser (2003) and Huang et al. (2009) indirectly solved this unbal-
anced data issue by applying two different sampling schemes to converted and unconverted
land separately. Nonetheless, when the total amount of converted or unconverted land is
small, sampling a fraction of land, for example, 5%, will result in a very small sample size.
As such, it might be difficult to fulfill sample size requirement.

Land development leads to land resource depletion. However, according to the mecha-
nisms in the SOME model, when information access is high or, in other words, when the
candidate pool is large, lands with high covariate values are always included in the can-
didate pool and quickly depleted. As a result, lands with lower covariate values become
competitive for later time since high value lands are gone. In other words, the same covari-
ate has increased impact on the hazard of being developed (Figure 9). This outcome
essentially violates the PH assumption that covariates exert constant effect to the hazard
over time. While in theory this might be the case, in experiments we found that for Cox
model, moderate violation of this assumption did not have detectable effects on our results.

Figure 9. Land resource depletion over time causes inflated effect of covariates on hazard, illus-
trated by W as the major factor. Note that low W is preferred (closer to water) but over time lands far
from water are developed.
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The performance of survival models hinges on sampling frequency. High frequency
improves performance because more dynamic information is captured. Performance of the
logit model, in contrast, is independent of sampling frequency, because it includes only two
states of land (e.g., the beginning and final states) in its analysis. In general, survival models
are recommended unless temporal information is limited; when this limit exists, the logit
model should be considered with concerns about its other conditions (e.g., balance between
‘0’s and ‘1’s).

For the purposes of evaluating alternative statistical models, the simulation approach
seems to be very useful. It complements conventional applications of statistical models
to empirical data in at least two respects. First, by simulating land-change processes, the
variables and parameters that are used to generate a given pattern are known completely,
and statistical modeling results can be compared to those known characteristics. Second, a
rich and diverse set of land-change processes can be generated, as opposed to one or a few
that might be contained in an empirical setting, providing us insights into the usefulness
of alternative statistical models under a diverse range of conditions. Although the near-
transparent quality of simulated data has been often used in other domains to quantify
modeling results (Foss et al. 2003, Burton et al. 2006), it is less common in geography
(Hirzel et al. 2001) and has never been applied to assess the ability of statistical models to
detect predictor variables in land-change applications.

There is a risk that virtual processes do not reflect the wide range of possible underly-
ing processes very well, introducing limits to the generality of the results. In this study, we
reduced this risk by several means: (1) to validate our findings, we used another simulation
program, which was independently developed based on different assumptions and con-
ceptualizations, and the match of results corroborates our findings (Appendix B); (2) the
Monte Carlo technique we employed randomly sampled the parameter space of our simu-
lation program, allowing comprehensive assessment of various situations under which our
land-change model might function; and (3) we tested all possible combinations of predictor
variables, for example, the eight cases in our study. This mimicked the situation in which
we are unaware of the true predictor values and have to make decisions from a pool of
potential predictors.

This research investigated the relative performance of survival analysis and logistic
regression using data from non-urban to urban land, a common land-change type that has
been well studied (Lambin 1997, Cheng and Masser 2003, Huang et al. 2009). It may
also represent a wide range of land-change types that are irreversible or unidirectional.
However, some conversions are reversible, for example, two-way changes between tilled
and untilled agricultural land or between pasture and forest. These reversible land changes,
or multi-event (on the same land unit) processes, certainly complicate the application of
survival analysis, and these complications may present situations in which survival anal-
ysis is less suitable for application. It is possible to segment a reversible land-change into
a series of irreversible changes, and variants of survival analysis have been reported to be
able to handle multi-event processes (Allison 2001, Andersen and Keiding 2002). Future
studies will need to test survival analysis methods on reversible land changes. If the simula-
tion approach is used, the selected simulation model needs to reflect this type of multi-event
process accordingly.

Several new directions will be explored in the future. First, this simulation study should
be linked to empirical studies. We are in the process of collecting satellite imagery and
socioeconomic data in a time series and experiment with how the increase in temporal
resolution of data affects statistical results. Second, we could more thoroughly appraise sta-
tistical models using other non P-value indicators, such as coefficients of covariates. Third,
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survival models should be integrated with land-change analysis more tightly in terms of
method and conceptualization. Our experimentation reveals the practical aspects of sur-
vival analysis in probing simulated dynamic land-change systems. Since survival analysis
outperforms other analytical techniques when temporal variability is present (e.g., dynamic
factors), it can be utilized in studies where disturbances, abrupt events, and policy inter-
ventions are introduced into the system. Not only do such disruptions change the dynamics
of land patterns, but they may also affect the predictors themselves.

7. Conclusion

This study confirms the theoretical speculation that survival models generally perform bet-
ter than logistic models using simulation-based land-change data. This may arise from
survival models’ more effective use of temporal information. We present our findings in the
hope that more research would be devoted to this type of models in land-change analysis.

Furthermore, this study provides insights into the relative performance of survival mod-
els and logistic models, an important step towards better defining application domains of
these methods. It appears that survival models perform better in detecting time-dependent
variables and are robust to handle very fast/slow land-change processes and varying lev-
els of information access. Logistic models are not recommended when very fast or slow
land-change processes give rise to highly unbalanced land outcomes (i.e., nearly all devel-
oped or undeveloped) or when information access is extremely high or low. The only time
logistic regression might be recommended is when samples in time are very sparse.

The simulation approach is useful when assessing the inferential power of statisti-
cal models in land-change studies. One advantage that cannot be otherwise obtained is
its endowment of a land-change researcher’s better control of experiment processes (thus
less ‘noise’ or unknown processes), allowing for potentially more accurate assessment of
different statistical models when applied in different land-change situations.
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Appendix
A. Piecewise data restructuring
A common practice in longitudinal data analysis is to conduct piecewise data restructuring for
some type of analysis (Shuster 1992). Because of various reasons such as data availability or the
researcher’s intentional choice, the entire time extent may be divided into several periods, which
are usually, but not necessarily, of equal length (Allison 2001, 109). For all the periods during
which the individual (person, location, or whatever unit under consideration) is at risk, we record
the information related to all the dependent and independent variables, forming data of so-called
individual-periods. In such individual-periods, a specific independent variable may take changing or
constant values depending on whether it is a time-dependent variable, and the dependent variable
may be the survival time within that specific period and the associated censoring status, or a binary
development status, depending on the type of model that is to be constructed. A common concern
may be the lack of independence among the individual-periods from the same individual, which has
been shown not to be a problem in the survival analysis literature (Allison 1995, 108, 223–225).

B. IDEAL model and results
The agent-based model called IDEAL is similar in design to SOME in terms of landscape (lattice
of cells) and agents. What sets them apart, however, are the rules agents use to make land purchase
decisions. In IDEAL, at each simulation step, all agents investigate available land parcels and make
up a preference list, which depends upon land characteristics, their own demands, and their attitude
toward risk represented using gains and losses (Ligmann-Zielinska 2009). The agents evaluate avail-
able land parcels using the ideal point (IP) decision rule. Agents compare available lands against
the best and worst cases in the landscape and, according to their own attitude toward risk, reassess
land drivers and assign weights to the parcels. When a parcel is favored by more than one agent,
this conflict is resolved by assigning that parcel to the agent who has highest preference order, and a
tie is resolved randomly. These mechanisms altogether, as it turns out, render a land-change process
drastically different from that of SOME.

We ran IDEAL over 1000 runs including three variables: beauty, land value, and water access.
Because developments affect beauty and land value (Ligmann-Zielinska and Sun 2010), their val-
ues vary over time. The water access variable, on the other hand, remains constant throughout the
time. The level of information access and the development percentage are controlled by parameters
sample_size and demand, which are uniformly sampled in nine ranges (Figure 4).

Experiments on IDEAL revealed similar patterns to those observed for SOME across logistic
models and survival models. The piecewise model had the highest success rate and the Cox model,
the survey model, and the logit model had the second, third, and lowest rates, respectively. For the
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logistic models, it was more difficult to detect the time-dependent variable (beauty and land value)
than the time-independent one (water access). Low information access and high development per-
centage posed challenges on the logit model, but had little influence on survival models. As we
sampled less frequently, the success rate decreased for all models except the logit model, whose rate
remained the same. Refer to online supplementary document for figures.

C. SAS code to implement statistical models
The logit model is implemented by the LOGISTIC procedure. Because the simulation starts from
an empty landscape, so only the final land status is enough to describe land development. The
descending option helps to model type ‘1’ event (land development is denoted as finalLandType
= ‘1’).

proc logistic descending data= myData;
model finalLandType= beauty&final distsc&final distw&final/
rsquare;

run;

The survey model is implemented by the SURVEYLOGISTIC procedure. ‘CLUSTER’ option is
enabled to specify correlations among location-periods from the same location. In addition, the input
data (myPiecewisedData) uses piecewise data restructuring (Appendix A).

proc surveylogistic data= myPiecewisedData;
cluster fid;
model LandType= beauty distsc distw/rsquare link=glogit;

run;

The Cox model is realized by the PHREG procedure. This procedure first calculates the hazard from
the event time and associated censoring information, then regresses the hazard against a suite of
explanatory variables. PHREG procedure has several options to deal with tied event time, among
which we use the exact option.

proc phreg data= myData;
model survival_time∗develop(0)=beauty distscdistw/ties=exact;

run;

The piecewise model is realized by the LIFEREG procedure (note this model can also be imple-
mented by LOGISTIC procedure when data time resolution is coarse (Allison 2001)). LIFEREG is
able to specify the time function of hazard; here we employ the exponential function. Also, LIFEREG
has not only the option for right censoring (the only option for PHREG), but also the options for left
and interval censoring. To specify a unique intercept in each period, the class option is in use. In addi-
tion, the input data (myPiecewisedData) for the piecewise model needs piecewise data restructuring
(Appendix A).

proc lifereg data=myPiecewisedData;
class step;
model (lower, upper)=beauty distscdistw step/dist=exponential;

run;
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