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A B S T R A C T

Fanjingshan National Nature Reserve (FNNR) in China is a biodiversity hotspot that is part of a larger, multi-use
landscape where tourism, farming, grazing, and other land uses occur. Payment for ecosystem services (PES)
programs that encourage afforestation on farmlands may be important drivers of land-cover and land-use change
in the region that surrounds FNNR. Our objective is to monitor and examine vegetation and land-use changes,
including PES-related afforestation, between 1989 and 2017. We utilize several image processing techniques,
such as illumination normalization approaches to suppress terrain effects, and multi-seasonal image compositing
to minimize persistent cloud cover. Ancillary data were also incorporated to generate reliable vegetation and
land-use change information. A random forest machine learning image classification routine is implemented
through the cloud-based Google Earth Engine platform and refined using optimal classifier parameter tuning.
Land-use transitions are identified and mapped with the implementation of stable training sites, discrete image
classification, and logical land-use transition rules. Accuracy assessment results indicate our change detection
workflow provides a reliable methodology to remotely monitor long-term forest cover and land-use changes in
this mountainous, forested, and cloud prevalent region. We quantify the area of new built development and
afforestation land and found that most of the land transitions took place in reserve buffer and its adjacent
environs. For example, less than 2 km2 of new built was identified within the reserve boundary compared to
25 km2 for the entire study area between 1995 and 2016. We also shed light on the strengths and weaknesses of
using Google Earth Engine for land-cover and land-use change studies. This efficient and open-access technique
is important not only for assessing environmental changes and PES efficacy, but also for evaluating other con-
servation policies elsewhere.

1. Introduction

Frequent anthropogenic disturbances can lead to land-cover and
land-use change (LCLUC) and cause ecosystems to degrade quickly,
even within designated protected areas (Liu et al., 2001). The most
feasible and efficient means for monitoring widespread and accelerated
LCLUC is through satellite remote sensing. Landsat satellite systems
provide a long-term and freely-available image archive which is ideal
for LCLUC monitoring applications. Landsat imagery has the potential
temporal frequency of every 16 days and a moderate (30m) spatial
resolution. Reliable change analyses can be achieved with surface re-
flectance products (Hall, Strebel, Nickson, & Goetz, 1991; Moran,
Jackson, Slater, & Teillet, 1992). Surface reflectance products for
Landsat 4 to 7 and Landsat 8 data are processed through automatic

algorithms of the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS; Masek, 2006) and Landsat Surface Reflectance Code
(LaSRC; Vermote, Justice, Claverie, & Franch, 2016) respectively. By
converting digital numbers to surface reflectance values, most atmo-
spheric and solar illumination effects are corrected. These corrections
enable multi-temporal Landsat images to be more comparable over
time.

Different image classification and change identification techniques
have been implemented for semi-automated land change studies. A
conventional maximum likelihood classifier combined with stable
training sites was used to classify nine Landsat image dates for a cloud-
prone study area (Stow, Shih, & Coulter, 2014). The technique was
deemed effective for long-term LCLUC monitoring. Machine learning
type image classifiers were tested by Schneider (2012) with dense
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Landsat image stacks and training sites of stable and changed features.
Among the tested image classifiers, random forest (RF) and support
vector machine (SVM) classifiers yielded high accuracies; the RF clas-
sifier was found to handle missing image data best. Although machine
learning type image classifiers may require larger training samples
(Kotsiantis, Zaharakis, & Pintelas, 2007), the RF image classifier was
determined by Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, and
Rigol-Sanchez (2012) to be less sensitive to small training sample sizes.
To quantify land-use changes and retain the transition classes, a post-
classification map comparison step was demonstrated by Yuan, Sawaya,
Loeffelholz, and Bauer (2005) to be effective.

China has two of the largest payment for ecosystem services (PES)
programs in the world (Liu, Li, Ouyang, Tam, & Chen, 2008), which aim
to increase forest cover and reduce soil erosion and flooding following
the long history of deforestation since the 1960s (Harkness, 1998) and
major flooding in 1998 (Uchida, Xu, & Rozelle, 2005). The two main
PES programs in China are commonly known as the National Forest
Conservation Program (NFCP) and Grain to Green Program (GTGP).
The NFCP was implemented in 1998, and the GTGP went into effect in
1999. Under the NFCP regulations, timber harvest would be reduced or
even eliminated from natural forests (Liu et al., 2008). The goals are for
plantation forests to become the main source of timber harvesting,
while natural forests are restored by banning firewood and resource
collection. The GTGP policy has a stronger focus on reducing soil ero-
sion by afforestation on sloped land (Uchida et al., 2005). Strategies
include afforestation on barren land, and converting farmland located
on steep slopes (i.e., steeper than 25° in southern China; Xu, Tao, Xu, &
Bennett, 2010) to ecological or economic trees. The Chinese govern-
ment provides payment incentives for both programs. Farmers who
enroll in GTGP receive financial and crop compensations, as well as
seedlings for afforestation. The participants of NFCP receive financial
support in exchange for forest protection (e.g. patrol and fire watch)
and not utilizing forest resources.

Several studies have demonstrated the utility of remote sensing to
monitoring afforestation in China, though most of them focused on the
drier, northern portion of the country. Zhou and Van Rompaey (2009)
utilized SPOT satellite time series images and derived vegetation in-
dices to monitor GTGP in Shaanxi. Significant vegetation cover increase
was mapped for the drier portion of their study area, while no vege-
tation change was detected in the humid and irrigated region. Using
Landsat images, Zhou, Zhao, and Zhu (2012) quantified land transitions
from agriculture and grassland to afforested land in the semi-arid Loess
Plateau area. Their results showed rapid afforestation activity occurred
after GTGP implementation and a more fragmented landscape was
observed. Landsat time-series images were used to map deforestation
and afforestation by Liu et al. (2013) for a 38-year period south of
Mongolia. Their highly accurate (89%) results indicated large-scale
afforestation activity could be monitored using remote sensing techni-
ques. Spatially extensive quantitative data about distribution and ef-
fectiveness of PES activities in the more humid, southern portion of
China remain minimal.

Located in southeastern China, Fanjingshan National Nature
Reserve (FNNR) is on the UNESCO World Heritage List because of its
high fauna and flora biodiversity, with over 100 endemic species found
in the reserve. Roughly 13,000 people live a subsistence life style within
the protected area, with a total of 21,000 population within or near the
region surrounding FNNR (Global Environmental Facility Project Team,
2004). Human land-use activities such as farming, grazing, and re-
source gathering take place within or near the reserve (Wandersee,
2013). FNNR has experienced rapid and complex land-use changes in
recent years, due to changing demographic patterns, economic and
tourism growth, and related development. In 2008, a gondola lift
system was built to transport tourists from the east reserve entrance to
the FNNR peak. An expanded road network that surrounds the reserve
was completed in 2010 (Aitken, An, & Yang, 2019). PES programs have
been implemented in the FNNR region for over 17 years. The last two

decades have witnessed increasing outmigration from FNNR to cities as
well as rapid initiation and expansion of local off-farm businesses, im-
posing substantial impacts on FNNR's land use and land cover. Given
the wide-spread human activities and the resultant rapid land changes
in this pristine, mountainous, and cloud-prone reserve, a closer ex-
amination of how to monitor LCLUC in an efficient and reliable manner
is important for reserve management.

FNNR is a temperate, cloud-prone region with steep terrain and
mixed forest cover types, which are great challenges when mapping and
monitoring land surfaces using optical remote sensing approaches.
Seasonal image composites have been shown to increase the separ-
ability of vegetation types and to minimize missing data due to cloud
cover (Franco-Lopez, Ek, & Bauer, 2001; Rodriguez-Galiano et al.,
2012). Shade and illumination normalization techniques (Tsai, Stow,
Shi, Lewison, & An, 2016; Wu, 2004) and spectral vegetation index
(SVI) products (Qi, Chehbouni, Huete, Kerr, & Sorooshian, 1994) have
been demonstrated to suppress illumination, terrain, and soil re-
flectance influences. Ancillary data, such as elevation models, were
found to improve vegetation classification accuracy (Belgiu & Drăguţ,
2016; Domaç & Süzen, 2006; Dorren, Maier, & Seijmonsbergen, 2003;
Xie, Sha, & Yu, 2008). The combined usage of seasonal image compo-
sites, illumination normalization, SVIs, and ancillary data in a previous
study mapping vegetation and land-use in FNNR yielded consistent
mapping results with moderate accuracy (Tsai et al., 2018).

A software platform that has been instructive in efficient open-ac-
cess image processing is Google Earth Engine (https://earthengine.
google.com). Earth Engine is a cloud-based and open-access geospatial
data analysis platform (Gorelick, 2017). It provides an image library
that can be directly accessed through the JavaScript coding environ-
ment. The image library contains data from various sensors and satellite
platforms, including almost the entire Landsat image archive and its
surface reflectance products. The coding environment allows users to
test and implement algorithms and interactively view results. Earth
Engine also provides many machine learning type image classifiers for
mapping applications. The efficiency of this platform has been de-
monstrated by Hansen et al. (2013), who generated global forest cover
change products from over 650 thousand Landsat 7 scenes in just days.
Johansen, Phinn, and Taylor (2015) achieved high mapping accuracies
using machine learning image classifiers with Landsat images on
Google Earth Engine in a study mapping woody vegetation change.

The primary objective of this study is to map, monitor, and quantify
land-use transitions pertaining to afforestation and anthropogenic de-
velopment for the FNNR and its environs. A secondary objective is to
assess the utility of monitoring land-use dynamics in the cloud prone
and steep terrain study area through Landsat satellite images and
Google Earth Engine deploying a workflow previously developed by
Tsai et al. (2018). Our hypothesis is that machine learning classification
of multi-temporal Landsat images are sufficiently accurate to effectively
monitor land-use changes in the FNNR region. We map vegetation and
land-use types with images captured before and after the PES program
implementation in the FNNR region. Techniques such as shade and il-
lumination normalization, and multi-seasonal Landsat image stacks are
employed to account for terrain-illumination effects and persistent
cloud cover in the study area. Stable training sites are utilized to train a
random forest machine learning image classifier to generate vegetation
and land-use maps for four periods from 1989 to 2017. Land-use
transitions focusing on afforestation and new developments are subse-
quently mapped. Land-transition maps are examined in conjunction
with high spatial resolution satellite imagery to identify corresponding
land-use changes.

2. Study area and data

FNNR in Guizhou province (27.92 N, 108.70 E) was listed as one of
the 25 global biodiversity hotspots (Myers, Mittermeier, Mittermeier,
Da Fonseca, & Kent, 2000). Established in 1978, there are over 5000
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species of plants and animals identified in the reserve. The reserve can
be divided into core and buffer zones, totaling about 419 km2 in size
(Yang, Lei, & Yang, 2002). Fig. 1 shows our study/mapping area, which
includes the reserve core area, the buffer zone, and an area that extends
outward by 6 km from the buffer zone to incorporate nearby villages.
Forest cover in the reserve core is mostly undisturbed primary forests.
The forest composition is complex and mixed. For mapping purposes,
we generalize the forest community types based on dominant species
into five types: deciduous, evergreen broadleaf, mixed deciduous and
evergreen, bamboo, and conifer. Villages and agriculture are found in
the surrounding hinterlands of the reserve. These surrounding areas
also contain mixed and secondary forests, as well as afforested.

Vegetation from PES programs. Both NFCP and GTGP PES programs
are implemented in the FNNR region. The implementation started
around year 2001. An estimated 9000 mu (6 km2) of farmland was
enrolled in GTGP for afforestation during 2001–2008 (Wandersee,
2013). About 3 km2 of land in the reserve were designated as GTGP
lands based on a hand-digitized layer created by the reserve staff. In
most cases, participants plant pine or fir trees in a mono-crop style. In
some occasions, bamboo and economical plants such as tea and fruit
trees are also planted.

Available Landsat surface reflectance images that cover the FNNR
region (World Reference System 2 path 126, row 41) were identified for
the following study periods: Time 1 circa 1989, Time 2 circa 1995,
Time 3 circa 2010, and Time 4 circa 2016. Table 1 provides information
on specific image dates and number of images used. The four study
periods were selected to coincide with and based on (1) the earliest
available Landsat data after reserve establishment, (2) prior to and after

the GTGP implementation in the region in 2001, and (3) the most up-to-
date land-use and land-cover. A four- and six-year image cycle was
found to be appropriate to monitor anthropogenic-related vegetation
changes (Coppin & Bauer, 1995), and a ten-year interval was found
sufficient to transition from successional vegetation to forest (Park,
Houghton, Hicks, & Peterson, 1983).

A digital elevation layer from the Shuttle Radar Topography Mission
(SRTM) was incorporated in the classification workflow. C-band and X-
band data were collected with different antenna panels for SRTM in the
year 2000 (Farr, 2007). The C-band derived digital elevation model
(DEM) has near-global coverage and was processed by NASA JPL. The
one arc-second (roughly 30m) spatial resolution topographic data were
released for public use in 2015.

Some high spatial resolution satellite imagery data were available
for viewing, and were utilized during our analysis. Imagery data in-
clude true-color Pleiades images from 2013 to 2017 on Google Earth,
and pan-sharpened QuickBird/GeoEye/WorldView-2 mosaic images
from 2004 to 2012 available as Basemap in the ArcGIS software. Four-

Fig. 1. Fanjingshan National Nature Reserve in southeastern China. The reserve boundary is outlined in green, while the reserve core zone in dotted red is slightly
smaller. The mapping area (including a 6 km buffer from the reserve boundary) for this study is outlined in white. The backdrop image is a true-color satellite image
mosaic collected by Planet Team in July 2017. The mosaicked Planet image exhibits bidirectional reflectance effects but is suitable for visual interpretation. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Image dates and number of images associated with the study periods for this
study.

Study Period Sensor Seasonal Composite Images Number of Images

Circa 1989 Landsat 5 1989–1990 12 images
Circa 1995 Landsat 5 1995–1996 12 images
Circa 2010 Landsat 5 2010–2011 11 images
Circa 2016 Landsat 8 2016–2017 17 images
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band Planet images (red, green, blue, and near-infrared bands) were
made available through its Education and Research Program (Planet
Team, 2017). We generated two cloud-free mosaicked products from
Summer 2016 and Summer 2017 for the FNNR study area. The mo-
saicked image set exhibits bidirectional effects, however it is suitable
for our visual interpretation purposes.

3. Methods

Vegetation and land-use types were mapped for each of four study
periods and the resultant maps were assessed for accuracy. Then land-
transition maps were generated through post-classification map com-
parison to emphasize lands that underwent afforestation and develop-
ment of new built land cover.

3.1. Classification feature input

All available Landsat surface reflectance images for each study
period are listed in Table 1. Images for the same year were first com-
piled into seasonal composites. Based on capture dates, images were
split into spring, summer, and fall season groups. The winter months
(i.e., December through February) were excluded due to leaf-off con-
ditions. A mean value composite image was generated for each season
group before they were layerstacked for each study period. Several
types of SVI image sets were derived for each season group and image
date, for subsequent input to image classifiers. The indices were meant
to enhance vegetation and soil moisture signature, and suppress terrain
illumination differences. These included normalized difference vege-
tation index (NDVI; Carlson & Ripley, 1997), modified soil adjusted
vegetation index (MSAVI; Qi et al., 1994), normalized difference blue
and red (NDBR), normalized difference green and red (NDGR), nor-
malized difference shortwave infrared and near infrared (NDII), and
spectral variability vegetation index (SVVI; Coulter, 2016). NDVI is
calculated as Equation (1):

=
−

+

ρ ρ
ρ ρ

NDVI   NIR red

NIR red (1)

and MSAVI is calculated as Equation (2):
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NIR red
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here ρNIR and ρred in Equations (1) and (2) represent the near infrared
and red reflectance values for a given pixel. NDBR, NDGR, and NDII are
calculated as the form of NDVI in Equation (1), using blue and red
bands for NDBR, green and red bands for NDGR, and infrared bands
(NIR and SWIR) for NDII. SVVI is calculated as the pixel-wise difference
between standard deviation (SD) of all Landsat bands (excluding
thermal) and SD of all three infrared bands, as shown in Equation (3):

= SD ρ SD ρSVVI   ( ) – ( )all bands NIR and SWIR bands (3)

Elevation, slope, and aspect were generated from the SRTM DEM
layer, and layerstacked with the seasonal SVIs as the classification
feature input for vegetation and land-use mapping.

3.2. Image classifier training data

The classification scheme consists of five common forest types in the
area, including deciduous, evergreen broadleaf, mixed deciduous and
evergreen, conifer, and bamboo, plus three land-use classes: built,
agriculture, and bare. A total of 120 single-pixel training samples were
extracted and compiled through vegetation type survey and manual
image digitization. When available, stable training pixels (Gray & Song,
2013; Shih, Stow, Weeks, & Coulter, 2016) representing a known ve-
getation or land-use type for the duration of the study period were
utilized to classify all four study periods. Through vegetation type

survey during Spring 2015, Fall 2015, and Spring 2016 in FNNR, a total
of 84 plots that are 20-by-20m or 30-by-30m in size were recorded for
the five dominant forest types based on accessibility on the ground.
These plot locations were cross-referenced with cloud-free Spring
Landsat imagery to ensure the forest cover were present in all study
periods. Eight out of the 84 forest point samples were found to transi-
tion from agriculture to conifer forest between c. 1989 and c. 2016 due
to PES implementation. These eight samples were recorded as agri-
culture class for the first two image dates, and conifer class for the latter
two image dates. The remaining 76 samples manifested as stable forest
type from the first image date to the last.

For the built, agriculture, and bare land-use classes, a total of 36
stable training pixels were manually selected using the approach similar
to that of Stow et al. (2014). The first image date was used as the basis
for selecting built training samples. The latter Landsat image dates were
used to generate initial agriculture training samples, based on the ra-
tionale that agriculture lands were persistent during the study period if
afforestation was not observed. The sample pixels were cross-referenced
with the 1989 Landsat image date to ensure stability. We also ensured
that the training sample pixels were located within a homogeneous
portion of the image (i.e. within a single vegetation or land-cover type).
The training dataset included 33 samples of mixed forest, 12 broadleaf
forest, nine deciduous forest, 10 conifer (18 for 2010 and 2016), 12
bamboo, 15 agriculture (23 for 1989 and 1995), 15 built, and six for
bare ground.

3.3. Classification, post-processing, and post-classification change analysis

A pixel-based, supervised RF machine learning image classifier was
used to generate vegetation and land-use maps for each of the four time
periods. The 120 training samples were randomly selected and split into
two-thirds and one-third portions respectively for training and testing
the image classifier (i.e., cross-validation). A grid search was performed
by exhaustively testing combinations of parameters to identify the op-
timal RF classification parameters—number of trees and number of
variables per split. The vegetation and land-use maps were generated
with the parameters that yielded the highest testing accuracy. The maps
were smoothed with a 3-by-3 pixel majority moving window to mini-
mize mixed-pixel and boundary effects on misclassification, and to
generalize to a more realistic minimum mapping unit.

Land-use transition maps were generated through a post-classifica-
tion comparison approach (Jensen, 1996) to depict afforestation and
new built development based on the Landsat-derived vegetation and
land-use maps. Logical land change rules were applied such that af-
forestation activity and new built developments could be mapped with
pixels that transitioned from-to classes of interest. To map afforestation
activity, pixels that were mapped as agriculture in the earlier study
periods and as conifer in the third or fourth study periods were labelled
as afforested land. New built development was identified for pixels that
were mapped in an earlier image date as any non-built classes (forest,
bamboo/conifer, and agriculture) and then as built in a later image
date.

3.4. Map accuracy assessment

Map accuracy was assessed for the four dates of vegetation and
land-use maps, as well as the land-use transition maps. The vegetation
and land-use maps were assessed for mapping accuracy using an in-
dependent set of 128 accuracy assessment point samples. The samples
were created in a random sampling manner with a distance restriction
(points to be minimally five Landsat pixels apart), and are well dis-
persed within the entire mapping area. Samples were labelled manually
using the 3m spatial resolution Planet imagery captured in July 2017
(Planet Team, 2017). These samples represent four vegetation and land-
use classes, 32 points per class: forest, agriculture, built, and bamboo/
conifer. To keep the analysis consistent, the vegetation and land-use
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maps were also categorically aggregated or generalized. The deciduous,
evergreen broadleaf, and mixed deciduous and evergreen classes were
grouped and recoded as forest; bamboo and conifer classes were
merged as a single bamboo/conifer class representing PES afforested
lands; agriculture and built remained separate. The accuracy assess-
ment samples were compared to the corresponding image pixels on the
generalized maps. Mapping agreement, producer's, user's, and overall
accuracies were recorded.

Accuracy of the land-use transition map was assessed in a more
qualitative manner due to a lack of available high spatial resolution
reference imagery that corresponds to the earlier study periods.
Centroids of 24 PES afforested lands were recorded through field visits
in FNNR during Spring 2018 and then verified on high spatial resolu-
tion satellite imagery on Google Earth. The Landsat-derived afforesta-
tion maps were compared to the 24 PES reference points to evaluate the
afforestation mapping results. The new built maps were visually in-
spected in conjunction with high spatial resolution satellite imagery
from ArcGIS Basemap, Planet imagery, and Landsat images to identify
and label the specific type of land-use changes.

4. Results

4.1. Vegetation and land-use map accuracy

The four-class vegetation and land-use maps have overall accuracies
ranging from 64 to 79% for the four study periods. Table 2 and Table 3
show the accuracy assessment results for before and after PES im-
plementation respectively for the four study periods. The earlier two
study periods have moderate mapping accuracies at 64 and 69% for
1989 and 1995 respectively, as shown in Table 2. As seen in Table 3,
maps for the latter two (more recent) study periods have higher overall
accuracies of 77 and 79% for 2010 and 2016 respectively. Of the four
classes, forest and built were consistently classified with high ac-
curacies. Greater mapping confusion occurred for agriculture and
bamboo/conifer classes. These land-cover and land-use types are likely
under-classified, as indicated by the lower producer's accuracies and
higher user's accuracies. The aggregated bamboo/conifer class is often
confused with forest, while agriculture is confused with built.

4.2. Land change maps and distributions

Afforestation and new built developments were mapped between
1995 and 2010, and 1995–2016. Distributions of afforestation and new
built developments were also examined for these two periods. The 1989
date was excluded because of its relatively low agriculture mapping
accuracy. Fig. 2 shows afforestation land mapped for 1995–2010.
Mapped afforested lands are located mostly near the reserve boundary,
particularly alongside river channels, roads, and valleys and creeks that
originated from the reserve core. Similar distribution patterns were
observed in both 1995–2010 and 1995–2016 afforestation maps.
However, the 1995–2016 afforestation map portrays substantial errors

in the area to the east of the reserve. This region, approximately 2 km2

in size, remained mostly agriculture from 1995 to 2016, while the 2016
map portrayed it as conifer. This was likely a result of the lower
mapping accuracy of bamboo/conifer class, and the under-classification
of agriculture from the 2016 image date. In 15 out of the total 24 re-
corded PES reference locations, afforestation areas are mapped within a
three Landsat pixel radius (90m).

Fig. 3 shows the new developments mapped between 1995 and
2016. Many new built developments are mapped along the reserve
boundary and river channels in a linear pattern. In the adjacent reserve
environs, new built developments are mostly clustered in nearby towns
and villages. While the road networks were mapped more contiguous in
2010 than in 2016, the 2010 map misclassified agriculture land as built
in many instances. Indicated by the accuracy assessment result shown
in Table 3, the 2010 map likely had an over-classified built class and an
under-classified agriculture class that led to more area being mapped as
new development in the transition maps.

The new built maps reveal that development in the study area
corresponds to widening, paving, and building of roads and freeways,
building of tourism and recreational infrastructure, and developing of
villages and other infrastructure. Fig. 4 shows examples of the mapped
new built developments in detail. Some of the recreational develop-
ments that were mapped corresponds to the construction of a golf fa-
cility and the station for the gondola lift as seen in Fig. 4a and b re-
spectively, both located on the east side of the reserve. The gondola lift
station is slightly larger than one Landsat pixel (30-by-40m) in size,
while the golf course is roughly 0.4 km2 in size. Other mapped infra-
structure development primarily corresponds to the following types of
construction activities and features: (1) building freeways south and
west of reserve as Fig. 4c shows; (2) completion of the road network
surrounding the reserve; (3) constructing new roads to connect villages,
mostly north and northwest; (4) constructing two dams to the west
(Fig. 4d illustrates one of them); (5) developing tourism infrastructures
such as reserve entrances on both east and west side of the reserve; and
(6) building a sports field at a nearby town to the east.

To improve the reliability of the land transition maps, manual
editing was performed to remove the apparent transition errors. Pixel
groupings incorrectly classified as new built development due to the
misclassified agriculture and built classes were recoded for the new
built development maps. Afforested pixels misclassified as agriculture
or bamboo/conifer classes were also recoded for the afforestation maps.
The areas of afforestation and new developments are summarized based
on the mapped and edited land transition maps. Table 4 shows the
quantified area of afforestation and new development for 1995–2010
and 1995–2016. Approximately 10 and 12 km2 of the study area was
mapped as afforestation based on the 1995–2010 and 1995–2016 land
transition maps, respectively. Most of the afforestation activity oc-
curred outside of the reserve, as only 1.33 and 1.45 km2 of afforestation
were mapped within the reserve boundary (i.e., core and buffer zones).

A substantial amount of development occurred during the study
period based on the new development maps. A total of 25.06 km2 is

Table 2
Accuracy assessment results for the c. 1989 and c. 1995 (i.e., prior to PES implementation) classification products generated with the seasonal composite image input
and random forest classifier. These values were derived using the final accuracy assessment data on the four-class generalized map. Gray cells indicate agreement.

Image-derived Class Reference Class User's Accuracy

Forest Agriculture Built Bamboo & Conifer

1989 1995 1989 1995 1989 1995 1989 1995 1989 1995

Forest 28 27 7 6 8 3 10 10 53% 59%
Agriculture 1 1 15 18 3 3 3 3 68% 72%
Built 0 0 10 6 21 25 1 1 66% 78%
Bamboo & Conifer 3 4 0 2 0 1 18 18 86% 72%
Producer's Accuracy 88% 84% 47% 56% 66% 78% 56% 56% Overall Accuracy

64% 69%
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mapped as new development from 1995 to 2016. Over 37 km2 of the
study area was portrayed as new development between 1995 and 2010.
Relatively little development occurred within the protected area, as
seen in Table 4 and depicted in Fig. 3. Less than 4 km2 are mapped as
new built development within the reserve boundary, and less than
0.5 km2 within the core area. Among the observed new built develop-
ments within the reserve are small-scale land transitions corresponding
to road construction along the valleys on the east and west side, and the
recreational/tourism developments (namely reserve entrances, the
gondola lift station, and tourism infrastructure at Fanjingshan peak).
The majority of the new development is found outside, but adjacent or
leading towards the reserve. The golf facility and a tourism attraction of
local indigenous tribe were both established within 1 km of the reserve
boundary. Over 33 and 23 km2 new development were mapped in the
reserve environs for 1995–2010 and.

1995–2016 respectively. Table 4 also reveals that forest was the
most common type to transition to built within the reserve area, while
agriculture land experienced the most land conversion to built outside
of the reserve.

5. Discussion

Long-term monitoring of LCLUC in nature reserves is important
worldwide given human-induced, widespread degradation of ecosys-
tems (Vitousek, 1994) and associated ecosystem services vital to human
being (Daily & Matson, 2008). Such monitoring is also pivotal to assess
the efficacy of PES programs in China, which has experienced wide-
spread, PES-related afforestation while subject to relatively rapid in-
frastructure development at the same time. In this study, we found that
the FNNR study area experienced sporadic development and land-use

Table 3
Accuracy assessment results for the c. 2010 and c. 2016 (i.e., post-PES implementation) classification products generated with the seasonal composite image input
and random forest classifier. These values were derived using the final accuracy assessment data on the four-class generalized map. Gray cells indicate agreement.

Reference Class User's Accuracy

Forest Agriculture Built Bamboo & Conifer

Image-derived Class 2010 2016 2010 2016 2010 2016 2010 2016 2010 2016

Forest 30 29 3 0 0 0 9 10 71% 74%
Agriculture 0 0 17 24 2 0 0 3 89% 89%
Built 0 0 11 4 30 31 2 2 70% 84%
Bamboo & Conifer 2 3 1 4 0 1 21 17 88% 68%
Producer's Accuracy 94% 91% 53% 75% 94% 97% 66% 53% Overall Accuracy

77% 79%

Fig. 2. Mapped afforestation from 1995 to 2010 overlaid on a Planet gray-scale NIR image mosaic. Afforestation is mapped from pixels transitioned from agriculture
to conifer/bamboo class. The mosaicked Planet image displayed bidirectional effects but remain suitable for visual interpretation.
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changes in the core protected area, and more extensive land-use
changes in the buffer zone and its adjacent environs between 1995 and
2016 that coincide with the implementation of PES programs.

The quality of the Landsat-derived vegetation and land-use maps
and their associated mapping accuracies are generally consistent and
suitable for land change monitoring. The c. 2010 and c. 2016 study
periods yielded higher classification accuracies compared to the two
earlier dates. This could be attributed to the higher quality Landsat
images and reference data used for training and accuracy assessment.
Seventeen images with acceptable cloud cover were available and in-
corporated in the seasonal composite for the c. 2016 period, yielding
the highest classification accuracy of all four dates. The composites for
2010 and 2016 (later) years are comprised of more summer images that
capture the fully leaf-on vegetation signature. For c. 2016, 11 summer
images were utilized compared to five for each of the first two dates.
The classification training data were derived based on field surveys and
images that corresponded more closely with the latter image dates in
time. Although training pixels were examined on c. 1989 and c. 1995
Landsat images and evaluated for stability, greater uncertainty exists
with over 20 years of temporal difference with the reference data.
Generating training data for the RF machine learning image classifier is
challenging due to limited access posed by dense vegetation and steep
terrain in the study area and lack of available high spatial resolution
imagery until after 2010. Thus, training samples are not well-dis-
tributed and likely do not encompass the full spectral signature varia-
bility of the mapping classes. For future studies, map accuracy could be
further evaluated using other techniques more suited for complex and
mixed land-cover and land-use products such as fuzzy accuracy as-
sessment (Gopal & Woodcock, 1994).

Most newly developed and many afforestation areas were correctly
identified and mapped. However, mapping errors from the earlier two
study periods due to the misclassification of agriculture land and con-
ifer/bamboo vegetation are manifested in the afforestation and new
built development products. Accurate vegetation and land-use mapping
is challenging because of the complex and mixed forest composition
and agriculture planting style in this study area. The composition of
mixed vegetation cover in the reserve consists of various degrees of
conifer, bamboo, evergreen broadleaf, and deciduous forest due to the
humid, temperate climate and the steep terrain and elevation gradient.
This likely led to the under-classification of conifer and bamboo, and
their confusion with the mapped forest class. Bamboo and conifer
naturally grow in the region and are often found on the edge of dis-
turbed agriculture land. Agriculture in the FNNR region occurs mostly
as small-scale subsistence farming on steep slopes and terraces. Crop
types were mostly leafy greens that are small and low in stature,
planted sparsely with secondary vegetation mixed in and a lot of soil
exposed. The agriculture planting style likely led to a similar spectral
signature of high reflective bare or impervious surface especially on the
moderate spatial resolution Landsat pixels, and caused the classification
confusion with the built class. The farming cycle followed the seasons
closely. During winter, agriculture land was mostly bare. This planting
pattern is likely why agriculture is sometimes confused with deciduous
forest cover.

Open-access and web-based Google Earth Engine software offers a
powerful image processing platform. The cloud-computing capability of
the Google Earth Engine platform makes it simple and efficient from
compositing multi-temporal imagery to implementing machine learning
image classification routines to generating results. The coding

Fig. 3. New development map from 1995 to 2016 overlaid on gray-scale NIR Planet image mosaic. New development was identified by pixels transitioned from
forest, agriculture, or conifer/bamboo (represented by different colors) to the built class. The mosaicked Planet image displayed bidirectional effects but remain
suitable for visual interpretation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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environment allows users to streamline image processing workflow. Its
inclusive raster processing functions can be easily implemented using
JavaScript, with guidance from documentation and tutorial resources.
The platform requires a valid Google user account and a simple online
application to access. Compared to many commercial image processing
software packages, there is no license or maintenance fees attached to
Earth Engine (for education, research, and non-profit users), and it does
not require downloading or installing software packages. However,
access and performance of Earth Engine is limited when an internet
connection is not available or unstable. We found it to be more efficient
to view and evaluate results with commercial image processing soft-
ware (e.g., ERDAS IMAGINE or ArcGIS). Manipulating displays of
images and maps is simpler and more efficient when the data are stored
locally on the computers. The platform also lacks manual editing cap-
abilities. Regardless, implementing and executing complex image ana-
lysis workflows with Google Earth Engine after the methods are tested
and documented can be highly automated, as demonstrated in this

Fig. 4. Examples of mapped new built development (shown in red) between 1995 and 2016 overlaid on Planet true-color mosaic image and a Pleiades image from
Google Earth: (a) a golf course located to the east of the reserve; (b) a gondola station within the reserve; (c) part of a freeway network to the west of reserve; and (d)
a newly-constructed dam also to the west. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 4
Mapped new built development and afforestation area for 1995–2010 and
1995–2016 periods. Areas are measured for the FNNR core zone, the entire
reserve, and the reserve plus the 6 km surrounding environs. Areas are mea-
sured in km2.

Mapped Area (km2) Reserve Core Reserve Reserve & Environs

2010 New Built 0.47 3.89 37.72
From Forest 0.30 2.08 14.18
From Agriculture 0.05 0.94 16.11
From Bamboo/Conifer 0.12 0.87 7.43

2010 Afforestation 0.49 1.33 10.09

2016 New Built 0.25 1.90 25.06
From Forest 0.09 0.92 8.33
From Agriculture 0.04 0.55 13.55
From Bamboo/Conifer 0.12 0.42 3.18

2016 Afforestation 0.16 1.45 12.46
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study. This is beneficial for reserve by streamlining workflow, mini-
mizing personnel training, and providing an open-access platform that
minimizes requirements for costly hardware and software.

We originally attempted to monitor forest cover change as a means
of evaluating conservation efforts in FNNR through Landsat-derived
canopy fractional cover mapping (CFC; Tsai et al., 2016). Canopy
fraction represents the amount of canopy closure as a percentage of
each image pixel area occupied by tree canopy (Wang, Qi, & Cochrane,
2005). Continuous CFC data can more precisely represent forest cover
variations in complex landscapes (Hansen, 2003), and its magnitude
change can reflect the degrees of forest cover change related to de-
gradation, thinning, and clearing. While our results suggested that the
modeled CFC changes were likely due to anthropogenic activities, the
accuracy of the CFC estimates was uncertain. We derived ground-based
estimation of canopy closure through a commonly used digital hemi-
spherical photography technique (DHP; Pueschel, Buddenbaum, & Hill,
2012), and found substantial variability in correspondence between the
ground-based and Landsat-derived CFC values, though range and
median CFC were similar throughout the areas for which ground-based
estimates were made. This could be attributed to the positional un-
certainty of ground-based DHP data, and differences in view perspec-
tive. The dense canopy in steep terrain likely limited the positional
accuracy of the satellite positioning device used to record the DHP data
locations. The understory of dense green vegetation provides a low
contrasting background, unlike using the up-looking ground-based
technique where tree cover contrasts well against a blue sky or cloudy
background. We also observed that the majority of land change in
FNNR is associated with land use conversion, such as agriculture
abandonment, afforestation, and new built expansion, rather than
forest thinning and cutting. Mapping multi-temporal vegetation and
land-use types was determined suitable for the purpose of environ-
mental monitoring.

It is worth noting that cash crops like tea and fruit trees are also
planted as part of the GTGP implementation in FNNR, though limited to
several selected villages. Tea bushes planted under the guise of PES
were observed in a small village to the northwest of the reserve, on
terraces surrounded by conifer stands. We also observed small plots of
yellow peaches and pears planted in the southern region, both planted
sparsely on terraces and mixed in with secondary regeneration after
year 2016. The areas where tea and fruit trees are grown are mapped
mostly as agriculture in all four image dates, with some bamboo/con-
ifer cover or mixed forest within. We did not incorporate tea or fruit
tree orchards into our classification scheme, as they are not common
nor well distributed within the study area.

6. Conclusions

Despite the recognized importance of mapping and monitoring ve-
getation and land-use changes in an era of many global changes arising
from or related to rapid population growth, over exploitation of natural
resources, and the related environmental degradation (Ripple et al.,
2014), this task remains challenging for our cloud-prone and moun-
tainous study area. Our combined techniques of utilizing seasonal
image composites, applying illumination normalization, and in-
corporating ancillary data successfully suppressed terrain effects and
minimize persistent cloud cover. The implementation of stable training
samples and logical land-use transition rules generated reasonably ac-
curate land-use maps for a period of over 26 years. Future studies could
focus on improving the mapping accuracy by increasing the training
sample size and increasing the usability of the image processing
workflow by integrating the Earth Engine code into a web application
with graphical user interface. Yeh (2009) and Feng, Yang, Zhang,
Zhang, and Li (2005) indicate that farmers show intentions to return to
farming once the PES compensation ends. PES land was also associated
with lower wildlife species richness (Chen et al., in review). Our ap-
proach and land-use transition maps could provide extensive insight

into locations of afforestation and build development lands. More ex-
tensive monitoring of land-use conversion is also important for evalu-
ating mid-to long-term ecological impacts of PES and other conserva-
tion programs, such as afforestation outcomes, reduced soil erosion,
slope stability, and runoff.

Acknowledgement

This research was funded by the National Science Foundation under
the Dynamics of Coupled Natural and Human Systems program [Grant
DEB-1212183]. This research also benefited from the Long Gen Ying
Travel Grant, Dr. Arthur Getis, and San Diego State University for
providing financial and research support.

References

Aitken, S., An, L., & Yang, S. (2019). Development and sustainable ethics in fanjingshan
national nature reserve, China. Annals of the Association of American Geographers,
109(2), 661–672.

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applica-
tions and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114,
24–31.

Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vege-
tation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252.

Chen, H. L., Lewison, R., An, L., Tsai, Y. H., Stow, D., Shi, L., et al. (in review). Assessing
the effects of payment for ecosystem services programs on forest structure and species
biodiversity. Ecological Applications.

Coppin, P. R., & Bauer, M. E. (1995). The potential contribution of pixel-based canopy
change information to stand-based forest management in the northern U.S. Journal of
Environmental Management, 44, 69–82.

Coulter, L. L., Stow, D. A., Tsai, Y. H., Ibanez, N., Shih, H. C., Kerr, A., et al. (2016).
Classification and assessment of land cover and land use change in southern Ghana
using dense stacks of Landsat 7 ETM+ imagery. Remote Sensing of Environment, 184,
396–409.

Daily, G. C., & Matson, P. A. (2008). Ecosystem services: From theory to implementation.
Proceedings of the National Academy of Sciences, 105(28), 9455–9456.

Domaç, A., & Süzen, M. L. (2006). Integration of environmental variables with satellite
images in regional scale vegetation classification. International Journal of Remote
Sensing, 27(7), 1329–1350.

Dorren, L. K., Maier, B., & Seijmonsbergen, A. C. (2003). Improved Landsat-based forest
mapping in steep mountainous terrain using object-based classification. Forest Ecology
and Management, 183(1–3), 31–46.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The
shuttle radar topography mission. Reviews of Geophysics, 45(2).

Feng, Z., Yang, Y., Zhang, Y., Zhang, P., & Li, Y. (2005). Grain-for-green policy and its
impacts on grain supply in West China. Land Use Policy, 22, 301–312.

Franco-Lopez, H., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest
stand density, volume, and cover type using the k-nearest neighbors method. Remote
Sensing of Environment, 77(3), 251–274.

Global Environmental Facility Project Team (2004). The management Plan of Guizhou
fanjingshan national nature reserve. Jiangkou. FNNR GEF Project Management Plan
Group.

Gopal, S., & Woodcock, C. (1994). Theory and methods for accuracy assessment of the-
matic maps using fuzzy sets. Photogrammetric Engineering & Remote Sensing, 60(2),
181–188.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017).
Google Earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing
of Environment, 202, 18–27.

Gray, J., & Song, C. (2013). Consistent classification of image time series with automatic
adaptive signature generalization. Remote Sensing of Environment, 134, 333–341.

Hall, F., Strebel, D., Nickeson, J., & Goetz, S. (1991). Radiometric rectification: Toward a
common radiometric response among multidate, multisensor images. Remote Sensing
of Environment, 35, 11–27.

Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., & Sohlberg, R.
A. (2003). Global percent tree cover at a spatial resolution of 500 meters: First results
of the MODIS vegetation continuous fields algorithm. Earth Interactions, 7(10), 1–15.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A.,
et al. (2013). High-resolution global maps of 21st-century forest cover change.
Science, 342(6160), 850–853.

Harkness, J. (1998). Recent trends in forestry and conservation of biodiversity in China.
The China Quarterly, 156, 911–934.

Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective.
Saddle River, New Jersey: Prentice-Hall.

Johansen, K., Phinn, S., & Taylor, M. (2015). Mapping woody vegetation clearing in
queensland, Australia from Landsat imagery using the Google Earth engine. Remote
Sensing Applications: Society and Environment, 1, 36–49.

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A re-
view of classification techniques. Emerging artificial intelligence applications in computer
engineering, 160, 3–24.

Liu, J., Linderman, M., Ouyang, Z., An, L., Yang, J., & Zhang, H. (2001). Ecological de-
gradation in protected areas: The case of wolong nature reserve for giant pandas.

Y.H. Tsai, et al. Applied Geography 111 (2019) 102077

9

http://refhub.elsevier.com/S0143-6228(18)30909-3/sref1
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref1
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref1
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref2
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref2
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref2
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref3
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref3
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref5
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref5
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref5
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref6
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref6
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref6
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref6
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref7
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref7
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref8
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref8
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref8
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref9
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref9
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref9
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref10
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref10
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref11
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref11
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref12
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref12
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref12
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref13
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref13
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref13
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref14
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref14
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref14
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref15
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref15
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref15
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref16
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref16
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref17
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref17
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref17
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref18
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref18
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref18
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref19
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref19
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref19
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref20
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref20
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref21
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref21
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref22
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref22
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref22
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref23
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref23
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref23
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref24
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref24


Science, 292(5514), 98–101.
Liu, J., Li, S., Ouyang, Z., Tam, C., & Chen, X. (2008). Ecological and socioeconomic

effects of China's policies for ecosystem services. Proceedings of the National Academy
of Sciences, 105(28), 9477–9482.

Liu, L., Tang, H., Caccetta, P., Lehmann, E. A., Hu, Y., & Wu, X. (2013). Mapping affor-
estation and deforestation from 1974 to 2012 using Landsat time-series stacks in
Yulin District, a key region of the Three-North Shelter region, China. Environmental
Monitoring and Assessment, 185(12), 9949–9965.

Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., et al.
(2006). A Landsat surface reflectance dataset for North America, 1990-2000. IEEE
Geoscience and Remote Sensing Letters, 3(1), 68–72.

Moran, M. S., Jackson, R. D., Slater, P. N., & Teillet, P. M. (1992). Evaluation of simplified
procedures for retrieval of land surface reflectance factors from satellite sensor
output. Remote Sensing of Environment, 41, 169–184.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000).
Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853.

Park, A. B., Houghton, R. A., Hicks, G. M., & Peterson, C. J. (1983). Multitemporal change
detection techniques for the identification and monitoring of forest disturbances.
Proceedings 17th international symposium on remote sensing of environment (pp. 77–97).
Ann Arbor, MI.

Planet Team (2017). Planet application program interface: In space for life on Earth. San
Francisco, CA. URL https://api.planet.com.

Pueschel, P., Buddenbaum, H., & Hill, J. (2012). An efficient approach to standardizing
the processing of hemispherical images for the estimation of forest structural attri-
butes. Agricultural and Forest Meteorology, 160, 1–13.

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil
adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M.,
et al. (2014). Status and ecological effects of the world's largest carnivores. Science,
343(6167).

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P.
(2012). An assessment of the effectiveness of a random forest classifier for land-cover
classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using
dense time stacks of Landsat satellite data and a data mining approach. Remote
Sensing of Environment, 124, 689–704.

Shih, H. C., Stow, D. A., Weeks, J. R., & Coulter, L. L. (2016). Determining the type and
starting time of land cover and land use change in southern Ghana based on discrete
analysis of dense Landsat image time series. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 9(5), 2064–2073.

Stow, D. A., Shih, H. C., & Coulter, L. L. (2014). Discrete classification approach to land
cover and land use change identification based on Landsat image time sequences.
Remote sensing letters, 5(10), 922–931.

Tsai, Y. H., Stow, D., Chen, H. L., Lewison, R., An, L., & Shi, L. (2018). Mapping vegetation
and land use types in fanjingshan national nature reserve using Google Earth engine.
Remote Sensing, 10(6), 927.

Tsai, Y. H., Stow, D., Shi, L., Lewison, R., & An, L. (2016). Quantifying canopy fractional
cover and change in Fanjingshan National Nature Reserve, China using multi-tem-
poral Landsat imagery. Remote Sensing Letters, 7(7), 671–680.

Uchida, E., Xu, J., & Rozelle, S. (2005). Grain for green: Cost-effectiveness and sustain-
ability of China's conservation set-aside program. Land Economics, 81(2), 247–264.

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the
performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of
Environment, 185, 46–56.

Vitousek, P. M. (1994). Beyond global warming: Ecology and global change. Ecology,
75(7), 861–1876.

Wandersee, S. M. (2013). Land-cover and land-use change in human-environment systems:
Understanding complex interactions among policy and management, livelihoods, and
conservation. Santa Barbara: Doctoral dissertation, University of California.

Wang, C., Qi, J., & Cochrane, M. (2005). Assessment of tropical forest degradation with
canopy fractional cover from Landsat ETM+ and IKONOS imagery. Earth Interactions,
9(22), 1–18.

Wu, C. (2004). Normalized spectral mixture analysis for monitoring urban composition
using ETM+ imagery. Remote Sensing of Environment, 93(4), 480–492.

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: A
review. Journal of Plant Ecology, 1(1), 9–23.

Xu, J., Tao, R., Xu, Z., & Bennett, M. T. (2010). China's sloping land conversion program:
Does expansion equal success? Land Economics, 86(2), 219–244.

Yang, Y. Q., Lei, X. P., & Yang, C. D. (2002). Fanjingshan research: Ecology of the wild
Guizhou snub-nosed monkey (rhinopithecus bieti). Guiyang: Guizhou Science Press.

Yeh, E. T. (2009). Greening western China: A critical view. Geoforum, 40, 884–894.
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification

and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multi-
temporal Landsat remote sensing. Remote Sensing of Environment, 98(2–3), 317–328.

Zhou, H., & Van Rompaey, A. (2009). Detecting the impact of the “Grain for Green”
program on the mean annual vegetation cover in the Shaanxi province, China using
SPOT-VGT NDVI data. Land Use Policy, 26(4), 954–960.

Zhou, D., Zhao, S., & Zhu, C. (2012). The grain for green Project induced land cover
change in the Loess Plateau: A case study with ansai county, shanxi province, China.
Ecological Indicators, 23, 88–94.

Y.H. Tsai, et al. Applied Geography 111 (2019) 102077

10

http://refhub.elsevier.com/S0143-6228(18)30909-3/sref24
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref25
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref25
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref25
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref26
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref26
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref26
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref26
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref27
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref27
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref27
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref28
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref28
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref28
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref29
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref29
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref30
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref30
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref30
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref30
https://api.planet.com
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref32
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref32
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref32
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref33
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref33
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref34
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref34
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref34
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref35
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref35
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref35
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref36
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref36
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref36
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref37
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref37
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref37
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref37
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref38
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref38
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref38
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref39
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref39
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref39
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref40
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref40
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref40
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref41
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref41
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref42
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref42
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref42
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref43
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref43
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref44
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref44
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref44
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref45
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref45
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref45
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref46
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref46
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref47
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref47
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref48
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref48
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref49
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref49
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref50
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref51
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref51
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref51
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref52
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref52
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref52
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref53
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref53
http://refhub.elsevier.com/S0143-6228(18)30909-3/sref53

	Monitoring land-cover and land-use dynamics in Fanjingshan National Nature Reserve
	Introduction
	Study area and data
	Methods
	Classification feature input
	Image classifier training data
	Classification, post-processing, and post-classification change analysis
	Map accuracy assessment

	Results
	Vegetation and land-use map accuracy
	Land change maps and distributions

	Discussion
	Conclusions
	Acknowledgement
	References




