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A B S T R A C T   

Deer surveys play an important role in the estimation of local ecological balance. In the Chitwan National Park of 
Nepal, the dense tree canopies and tall vegetation often obscure the presence of wild deer, which has a negative 
effect on the accurate population surveys of wild deer. UAVs equipped with infrared sensors have been 
increasingly used to monitor wild deer by capturing a lot of images. How to automatically recognize and obtain 
the number of deer objects from thermal images is becoming an important research topic. Due to the difference 
between thermal images and true-color images, as well as the variations in deer object sizes in these two types of 
images, current ready-to-use object detection models, designed for true-color imagery, are ill-suited for the task 
of detecting small deer objects within thermal imagery. In this paper, an enhanced Faster R-CNN was constructed 
to detect small deer objects from thermal images, in which a Feature Pyramid Network (FPN) based on a residual 
network is used to improve feature extraction for small deer objects and multi-scale feature map constrution for 
the subsequent region proposals searching, bounding box regression, and regions of interest (RoIs) classification. 
In addition, small-scaled anchor boxes and a multi-scale feature map selection criterion are devised to improve 
the detection accuracy of small objects. Finally, based on Faster R-CNN, FPN, and different residual networks 
including ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152, we constructed five object detection 
models, and evaluated their detection performance by using COCO evaluation matrix. Under the condition of 
IoU ≥ 0.5, the integration of Faster R-CNN, FPN, and ResNet18 demonstrated to perform better than others. 
Specifically, The COCO evaluation results revealed an Average Precision (AP) score of 91.6% for all deer objects. 
Small deer objects (area ≤ 200 pixels) achieved an AP score of 73.6%, medium deer objects (200 < area ≤ 400 
pixels) demonstrated an AP score of 93.4%, and large deer objects (area > 400 pixels) achieved the highest AP 
score of 94.3%. Our research is helpful for effective wild deer monitoring and conservation and can be a valuable 
reference for the exploration of small object detection from low-resolution thermal images.   

1. Introduction 

Deer survey refers to the process of determining the number of deer 
and their distribution in a specific area or habitat (Bengsen et al., 2022a; 
Schwarz and Seber, 1999). Deer surveys are often conducted within a 
particular ecosystem, such as a forest, a wildlife reserve, or a national 
park. By accurately estimating the number of deer in a given area, 
wildlife authorities and conservationists not only can have a better 

understanding of the distribution of deer population, but also provide an 
important barometer for the local ecological balance of an ecosystem 
based on the interactions of deer with other species (Forsyth et al., 
2022). When deer population decreases a lot in a specific area, it often 
signals an increase in carnivorous animals or rampant poaching. 
Conversely, a surge in deer population may indicate a decline in 
carnivorous species or an overabundance of deer. Therefore, accurate, 
detailed, and up-to-date wild deer surveys are of great benefit to wildlife 
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management and conservation. 
Traditional wild deer surveys were often conducted using ground- 

based counting by field investigators who observe wild animals at 
close range. For example, the population of wild deer is estimated by 
tracking and counting deer and their pellets (Lautenschlager, 2021). 
Ground-based counting is an arduous and exhausting work for field in
spectors, and the survey may not be accurate due to deer’s elusive 
behavior, dense vegetation, varied landscape, and presence of 
dangerous carnivorous species. Wild deer is known for being very alert 
and tend to avoid human presence, making it very difficult for surveyors 
to get close enough for clear observations (Freeman et al., 2022). Tall 
grass and thick tree branches and canopies often obscure visibility and 
make it hard to spot and count deer. Deer may be distributed in grass
lands, wetlands, and forests, each with their unique challenges to access. 
Additionally, various dangerous carnivorous species in these landscapes 
are potential risks to surveyors. 

Camera trapping is also a popular method used in wild deer surveys. 
Camera traps are strategically placed in various locations, such as trails, 
watering holes, and other areas where deer are likely to pass. Fig. 1 (a) 
shows a deer captured by a camera trapping when it passed by the trap. 
Camera trapping can generate a lot of images and automatic object 
detection models can be used to alleviate the task of reviewing images. 
Four deer species were surveyed with camera trappings in the state of 
Queensland, New South Wales, and Victoria, eastern Australia, and a 
detection model was used to count the number of deer in the camera 
trapping images, and to estimate the density of wild deer (Bengsen et al., 
2022b). Compared to ground-based counting, camera trapping allows 
researchers to study wildlife without direct human presence, reducing 
disturbance to the animals, and can operate for extended periods. 
However, camera traps are stationary devices, and their deployed lo
cations are often chosen based on human subjective judgement or prior 
knowledge. This can introduce bias, resulting in certain areas or species 
to be overrepresented, while others underrepresented or missed entirely. 

In recent years, remote sensing technologies have been embraced in 
wild deer surveys, offering a powerful and efficient means to observe 
and monitor wild deer populations and their habitats over large 
geographic areas. Remote sensing-based surveys may be conducted with 
manned aircraft census and satellite monitoring. For example, a manned 
helicopter was used to monitor and estimate the population of wild deer 
in the Sierra Nevada as shown in Fig. 1 (b) (Conner and McKeever, 
2020). While manned aircraft surveys offer flexibility regarding survey 
timing and area, they also come with a relatively high cost to pay for not 
only the aircraft but also the qualified and skilled pilots, and may exert 
disturbance to the animals due to noise imposed by the flying aircraft 
(Petso et al., 2021). Satellite-based wildlife monitoring, capable of 
counting wild animals from space, primarily relies on very-high- 
resolution (≤1 m) satellite imagery. For instance, the population of 
Weddell seals in the coast of Antarctica was estimated using high- 
resolution satellite images . These methods offer extensive observation 
coverage, short revisit intervals, and minimal disturbance to the ani
mals. Nonetheless, it’s necessary to note that even with very-high- 

resolution satellite imagery, these techniques are only effective in 
recognizing larger individual animals (such as wildebeests shown in 
Fig. 1 (c)), but not smaller animals such as wild deer. 

With the recent advancement of drone technology and the 
decreasing of the equipment costs, unmanned aerial vehicles (UAVs) 
have emerged as a promising alternative for conducting wildlife surveys. 
Unlike manned aircraft requiring highly skilled pilots, UAV surveys can 
be operated by average researchers with moderate training and there
fore is much cost-effective (Nazir and Kaleem, 2021). Furthermore, 
UAVs offer greater flexibility in revisiting survey areas at any specific 
time, compared to the fixed date and time of satellite remote sensing 
data acquisition. Additionally, UAVs can be configured or customized 
with different types of sensors, allowing them to capture not only very 
high-resolution true-color imagery but also thermal imagery, enhancing 
the versatility to perform wildlife surveys at the landscapes covered by 
dense forest and tall vegetation. Fig. 2 shows two images simultaneously 
captured by a UAV in an area with 8 wild deer using two different 
sensors. Fig. 2 (a) is a true-color image with a resolution of 8000 × 6000 
pixels, with 4 deer in the open space near the road (labeled by green 
rectangles) easily seen, two deer between the tree canopies (labeled by 
yellow rectangles) visible and not easily be detected, and two deer 
covered partially or completely by tree canopies (labeled by red rect
angles) not visible. Fig. 2 (b) is a thermal image with a resolution of 640 
× 512 pixels, with 8 wild deer all visible, even the two deer beneath the 
tree canopies, attributing to their body temperature being higher than 
the ambient background. Therefore, UAVs are increasingly employed for 
wildlife monitoring and counting, and researchers have begun to adopt 
thermal sensors for wild deer surveys (Preston et al., 2021). The focus of 
study is to monitor wild deer in the Chitwan National Park of Nepal. 
Most parts in the park are covered by trees and tall grasses, which make 
it difficult for true-color sensors to detect wild deer due to the occlusion 
of vegetation canopies as shown in Fig. 2 (a). Therefore, thermal cam
eras onboard the Mavic 2 Enterprise Advanced DJI Drones are used as 
the primary sensors for wild deer survey in this research. 

UAV surveys and camera trapping can easily capture thousands of 
images, resulting in huge image datasets that require careful examina
tion for the identification of wild animals. Manual recognition and 
counting of animals from the imagery is relatively accurate and reliable. 
For example, white-tailed deer in two United States National Parks 
(Harpers Ferry National Historic Park and Monocacy National Battle
field) surveyed by UAVs equipped with thermal sensors were enumer
ated manually in order to estimate their density (Preston et al., 2021). 
However, manual recognition and counting requires great effort to re
view a massive number of images, which is a labor-intensive and time- 
consuming task (Greenberg et al., 2019). To overcome this difficulty, 
automatic or semi-automatic methods based on artificial intelligence 
have been used to detect animals from images. Deep learning models 
characterized by convolutional neural networks (CNNs) are being 
increasingly used to automate the animal recognition and counting 
tasks, and their performance is continuously improved with the intro
duction of enhanced architecture (Kaur and Singh, 2022). For example, 

Fig. 1. (a) a deer was captured by a camera trapping; (b) a deer was monitored by a helicopter; (c) wildebeest migration captured by GeoEye-1 Satellite (Copyright: 
MAXXAR www.satimagingcorp.com/). 

H. Lyu et al.                                                                                                                                                                                                                                     

http://www.satimagingcorp.com/


Ecological Informatics 79 (2024) 102383

3

a deep neural network architecture based on ResNet 50 was employed to 
detect wild animals from the Snapshot Serengeti true-color imagery 
captured by camera trapping in Africa, and achieved a detection accu
racy of 93.8% (Norouzzadeh et al., 2018). A model based on Feature 
Pyramid Network (FPN) and ResNet50 was applied to detect elephants, 
giraffes, and zebras from high-resolution true-color UAV images 
captured over an open savanna in the Tsavo National Park of Kenya, and 
achieved a detection accuracy of 95% for elephant, 91% for giraffes, and 
90% for zebras (Eikelboom et al., 2019). However, their method de
pends on using a fix-size sliding window to scan images for object 
detection. As the window slides across an image, the same region of the 
image may be evaluated multiple times with slight positional variations, 
leading to prolonged processing time, especially for large images. In 
addition, when dealing with objects of varying sizes using a fix-size 
sliding window, the detection precision for objects smaller than the 
window size tends to decline (Eikelboom et al., 2019). To address these 
problems, object detection architecture with varied window sizes such 
as Faster R-CNN and YOLO have been adopted to detect objects. For 
example, a pre-trained Faster RCNN + InceptionResNetV2 model was 
utilized to detect European mammals from camera trapping imagery and 
achieved a detection accuracy of 94% (Carl et al., 2020). A RetinaNet 
and a Faster R-CNN + ResNet50 were utilized to detect ungulate animals 
including deer and boars from camera trapping imagery (Vecvanags 
et al., 2022). However, there is a relative scarcity of research employing 
these improved models for detecting animals from UAV images, with an 
exception by (Peng et al., 2020) who employed Faster R-CNN to detect 
kiang objects from true-color drone images with a resolution of 6000 ×
4000 pixels, achieved an overall precision of approximately 90%. 

To the best of our knowledge, detecting small wild animals like deer 
from UAV thermal images using these improved object detection models 
has not been found in the literature. One possible reason is likely that the 
size of deer objects in pixels in a UAV thermal image is much smaller 
than that in a high-resolution true-color image. The size of deer objects 
in pixels in a true-color image (Fig. 2 (a)) and those in a thermal image 

(Fig. 2 (b)) are listed in Table 1. On average, the total image size of deer 
objects in the thermal image is about 100 times smaller than that in the 
true-color image, providing very limited feature information to repre
sent deer objects. Despite their outstanding performance for animal 
detection in true-color imagery, current ready-to-use models designed 
for true-color camera trapping or UAV imagery could not be directly 
applied to UAV thermal images for deer detection. Therefore, custom
izing the improved deep learning structure and finding optimal model 
configuration suitable for detecting small objects such as deer from UAV 
thermal images is worthy of further investigation, which comprises the 
main purpose of this study. 

For deep learning-based object detection, two fundamental elements, 
feature maps and anchor boxes, play critical roles. Feature maps are 
extracted from original images and utilized to identify potential objects 
of interest and locate their rough positions within an image. Subse
quently, anchor boxes come into play for generating regions of interest 
(RoIs) and facilitating bounding box regression, which enables the 
refinement of RoIs to better match the bounding box of the objects of 
interest. In the general definition of CNNs, the CNN layers that are closer 
to the input layer are called shallower layers, while deeper layers are 
those more distant from the input layer. In the architecture of object 
detection, various CNNs—such as ResNet18, ResNet34, ResNet50, 
ResNet101, and ResNet152—differ in the overall depth of their layers. 
These CNNs are used to extract feature maps from the original imagery. 
Deeper layers derive additional features from the output of shallower 
layers through progressive downscaling. Consequently, feature maps 
from shallower layers contain more spatial feature information due to 
higher resolution, while those from deeper layers have more bands and 
may provide more abstract semantic feature information. However, 
when dealing with small objects containing only a limited number of 
pixels, the vital spatial information about these objects can potentially 
be lost in the deeper layers as part of the downsizing process, which may 
not only fail to contribute to detection process but can also diminish 
detection precision. Additionally, to ensure that the predicted RoIs align 

Fig. 2. Two wild deer were not seen on the 8 K true-color image (left) due to canopy cover, but they were visible on the thermal image (right) due to their higher 
body temperature. 

Table 1 
the size of deer objects (Width, Height) in Fig. 2.   

Deer 1 Deer 2 Deer 3 Deer 4 Deer 5 Deer 6 Deer 7 Deer 8 

True Color (230,314) (211,216) (240,245) (230,314) (309,343) (220,314) (323,300) (265,260) 
Thermal (23,30) (20,21) (23,24) (23,28) (30,34) (19,31) (31,30) (26,22)  
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well with the bounding boxes of objects of various sizes, it is essential 
that anchor box sizes are not fixed but instead set to be comparable to 
those of the objects of interest. For small object detection, an anchor box 
that is too large may introduce unwanted background information, 
while one that is too small may only encompass part of the object, both 
of which can negatively impact the process of object identification and 
bounding box regression. 

The purpose of this research is to address the above-mentioned 
problems of small object detection based on deep learning and to ach
ieve optimal model structures and configurations for deer surveys using 
UAV thermal images. For this purpose, an enhanced Faster R-CNN based 
on FPN + ResNets was constructed, and the following three objectives 
will be achieved in this paper. Firstly, Feature Pyramid Network (FPN) 
and residual networks are used to construct multi-scale feature maps. 
Specifically, residual networks are utilized to extract feature informa
tion from original imagery. The features obtained from both shallower 
and deeper layers are subsequently fused by FPN to generate diverse 
feature maps with different resolutions. Secondly, customized anchor 
boxes that match with deer of different sizes in the UAV thermal images 
are adopted to improve the precision of small object detection. Thirdly, 
the multiscale feature map selection criterion is defined, allowing the 
model to generate RoIs. These RoIs draw upon feature information from 
the respective multiscale feature maps based on their sizes, which can 
contribute to the efficiency of object identification and facilitate precise 
bounding box regression. Finally, the model proposed in this paper was 
tested in UAV thermal imagery including 2278 thermal images and 
13,509 deer instance annotations. Based on the COCO evaluation ma
trix, the model obtained an Average Precision (AP) score of 91.6% for all 
deer objects. Specifically, small deer objects (area ≤ 200 pixels) ach
ieved an AP score of 73.6%, medium deer objects (200 < area ≤ 400 
pixels) demonstrated an AP score of 93.4%, and large deer objects (area 
> 400 pixels) achieved the highest AP score of 94.3%. 

The rest of the paper is organized as follows. In Section 2, an over
view of using deep learning to detect objects in wild animal surveys is 
introduced. This section offers insights into the existing research in this 
domain. Section 3 delves into the detailed description of our small deer 
object detection model based on Faster R-CNN, FPN, and ResNets. This 
section outlines the modifications made to the original model and 
highlights the novel techniques employed to improve the detection of 
small deer objects in low-resolution thermal images. In Section 4, the 
experimental results and analysis are presented. These experiments can 
provide evidence to support the efficacy of our approaches. Finally, 
Section 6 concludes the paper, summarizing the key findings and con
tributions. This section also discusses some future work in this field. 

2. Related work 

Wildlife surveys, crucial for understanding biodiversity and popu
lation trends, often involve the collection of a vast number of images. 
This abundance of visual data presents a significant challenge as the 
manual review and identification of animals within these images are 
labor-intensive and time-consuming. To address this issue, various 
automatic and semiautomatic methods were proposed to detect animals 
from images. From the perspective of techniques, these methods can be 
categorized into two classes: pixel-based classification using machine 
learning and region-based classification using deep learning. 

Pixel-based classification methods, such as supervised classification, 
unsupervised classification, and threshold setting, are the most common 
methods for detecting animals in remote sensing images (Peng et al., 
2020). For example, threshold setting is a simple and widely used 
approach in wildlife detection from images. The idea behind this method 
is to apply a threshold value to a specific image feature, such as color, 
intensity, or texture, and then consider all regions or pixels that surpass 
this threshold as potential animal regions. In (Jobin et al., 2008), a pixel- 
based classification method was proposed to classify pixels based on 
their spectral characteristics and compare them to predefined threshold 

to find the regions including animals. While these approaches work well 
for targets with distinct gray values that significantly differ from the 
background, they often exhibit limited accuracy in complex environ
ments where animals blend with their surroundings. Subsequently, more 
stable hand-crafted features, such as Histogram of Oriented Gradients 
(HOG) and Haar-like features, along with classifiers like Support Vector 
Machines (SVMs) were used to detect animals from the images captured 
from complex environments (Rangdal and Hanchate, 2014). (Torney 
et al., 2016) introduced a method that combined rotation-invariant 
object descriptors with machine learning algorithms to detect wilde
beests from aerial images. This approach yielded better results 
compared to manual operations. (Rey et al., 2017) proposed a semi
automatic system for detecting large mammals in UAV imagery with a 
high recall rate. But these methods often lacked robustness and still 
struggled with complex backgrounds. 

Recently, with the breakthrough in deep learning, particularly the 
development of CNNs has revolutionized the field of animal detection. 
With CNNs, feature extraction became more automated, enabling the 
models to learn hierarchical representations from raw image data. One 
of the most popular methods was to use image classification CNNs to 
find potential areas containing animals by using the sliding window 
approach across the image. In (Barbedo et al., 2019; Barbedo et al., 
2020), famous models, such as VGG, ResNet, AlexNet, GoogleNet, 
DenseNet, and NASNet, were used to detect cattle from 4 K-resolution 
images. (Kellenberger et al., 2018) constructed a CNN model based on 
Resnet-18 to detect large mammals from a dataset acquired over the 
Kuzikus wildlife reserve in eastern Namibia and got a high recall up to 
90%. However, this method is very time-consuming and computation
ally expensive. Later, the methods using the sliding window techniques 
were replaced by object detection models based on deep learning, such 
as R-CNN (Bharati and Pramanik, 2020), Fast R-CNN (Girshick, 2015), 
Faster R-CNN (Ren et al., 2016), YOLO (Bochkovskiy et al., 2020), and 
RetinaNet (Lin et al., 2018). These models combined region proposal 
techniques with deep CNNs, significantly improving detection accuracy 
and efficiency. Researchers started applying these models to animal 
detection tasks. (Eikelboom et al., 2019) utilized RetinaNet to detect 
elephants, giraffes, and zebras from aerial images in Kenya, and they 
obtained the accurate ratio of 95% for elephants, 91% for giraffes and 
90% for zebras. (Aburasain et al., 2021) used a single-pass deep CNN 
known as YOLOv3 to detect cattle from drone images and got a F-score 
of 0.93. In (Popek et al., 2023), a Faster R-CNN model was used to detect 
deer from the images from camera traps, and got an accuracy of 0.87. 
Even though these models significantly improve the effectiveness and 
efficiency of animal detection, the detection accuracy is not stable, 
especially when dealing with imagery containing objects of varying sizes 
or objects vary significantly in size within an image. Feature Pyramid 
Network (FPN) proposed by (Lin et al., 2016) was used to address this 
problem. The key idea is to leverage the inherent multi-scale, pyramidal 
hierarchy of deep convolutional neural networks (DCNNs) to construct 
feature pyramids, which are used to detect objects at different scales. 
Based on different DCNNs, various FPNs have been constructed. In the 
research area of animal detection, FPN based on ResNet50 
(ResNet50FPN) is widely used as the backbone of object detection 
models for wildlife surveys (Nazir and Kaleem, 2021). For example, 
ResNet50FPN was used to remotely detect sick chicken from a poultry 
farm and obtained a detection accuracy of 93.7% (Zhang and Chen, 
2020). A Faster R-CNN integrating ResNet50FPN was constructed to 
detect big animals from Google Open Images and COCO datasets, such as 
Bear, Fox, Dog, Horse, Goat, Sheep, Cow, Zebra, Elephant, and Giraffe. 
They got a mean average precision of 0.81(Yudin et al., 2019). In 
(Delplanque et al., 2022), FPN based on ResNet101 was used to generate 
feature maps for object detection models to to detect six types of African 
mammals of Topi, Buffalo, Kob, Warthog, Waterbuck, and Elephant, and 
got a mean average precision of 0.82. 

Currently, most above research mainly focuses on detecting larger 
objects from high-resolution true-color images, and some models have 
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obtained the outstanding performance of animal detection. However, 
the research of detecting small objects in thermal imagery remains 
relatively unexplored. Small objects in thermal images captured by 
drones may appear at varying distances from the drone camera, often 
leading to size variations in the captured images. For example, the deer 
objects in the UAV thermal imagery used in this paper exhibit a size 
variation ranging from 15 × 15 pixels to 65 × 65 pixels. It is relatively 
difficult for current ready-to-use models trained on true-color imagery to 
be directly applied to detect small objects from UAV thermal images due 
to the distinct context difference between thermal images and true-color 
images, as well as limited pixels for representing small objects in UAV 
thermal images. In addition, ResNet50 has been used to extract feature 
maps for object detection models by default in many papers. However, 
as an image progresses through DCNNs, down sampling operations such 
as pooling reduce the spatial dimensions of the feature maps. This 
reduction in spatial information is beneficial for capturing larger objects 
but can be detrimental to the representation of small objects, which 
leads to the disappearance of fine-grained details, particularly in small 
objects. Therefore, in this paper, Apart from ResNet50, ResNet18, 
ResNet34, ResNet101, and ResNet152 are all tested to extract features 
from UAV thermal images in order to find optimal model structures and 
configurations for deer survey using UAV thermal images. 

3. Methodology 

3.1. Overview 

Generally, an object detection model takes images as input, and a 
DCNN, served as the backbone network, is used to construct feature 
maps. Subsequently, a region proposal network comes into play, and 
generates region proposals, assigning a probability for containing an 
object to each region. The derived region proposals are reshaped by a 
pooling layer to generate Regions of Interest (RoIs). Finally, classifica
tion and bounding box regression is engaged to predict both the pres
ence and location of objects within the original images. These types of 
models are commonly called ‘two-stage detectors’ due to their two-step 
process (Goyal et al., 2023). 

Faster R-CNN is a two-stage detector widely recognized for its 
effectiveness in object detection from images. It comprises two main 
components: (1) a Region Proposal Network (RPN), responsible for 
generating a set of region proposals; and (2) a Fast R-CNN (Girshick, 

2015) module, which classifies all regions into objects or background 
and refines the boundaries of the objects. Notably, these two model 
components share common parameters in the convolution layers used 
for feature extraction, enabling the two components to be trained at the 
same time to achieve competitive object detection performance. Fig. 3 
shows our Faster R-CNN model designed to detect small deer objects 
from thermal images. In the Faster R-CNN model, feature maps extracted 
from images play a crucial role because they provide essential spatial 
and semantic feature information for the RPN to predict RoIs, and some 
of these predicted RoIs may correspond to background regions. Specif
ically, according to their positions within original images, the corre
sponding feature information of the RoIs is obtained from feature maps. 
Then the classifier based on Fast R-CNN utilizes this feature information 
to classify the RoIs into deer objects and backgrounds. 

The significance of feature maps in object detection is well- 
acknowledged, but equally important are anchor boxes. Anchor boxes 
serve as reference templates at different scales and aspect ratios, guiding 
the object detection process to precisely locate and classify objects of 
different sizes and shapes. By aligning the predicted bounding boxes 
with the anchor boxes, the model can detect objects effectively, espe
cially the small ones that may otherwise be overlooked. Inaccurate an
chor boxes can impede the model’s capability to detect small objects, 
potentially causing them to be entirely missed during the detection 
process. Properly selected anchor boxes are indispensable for the sub
sequent bounding box regression, which refines initial predicted 
bounding boxes to better fit the objects’ actual locations, thus signifi
cantly enhancing the model’s precision. Anchor boxes also play a role in 
hard negative mining, which focuses on challenging negative examples 
during the training process. By selectively mining hard negative exam
ples, the model can learn to better distinguish between objects and 
background regions, leading to improved overall performance. 

3.2. Multi-scale feature map construction 

Feature maps are generated by applying a convolutional layer to the 
input image or the feature map output of the prior layers. For an object 
detection model, feature maps are utilized to locate the positions of 
objects and classify them into specific classes. The original Faster R-CNN 
in (Ren et al., 2016) adopted VGG16 (Simonyan and Zisserman, 2015) as 
its backbone network to extract feature information from input images. 
Specifically, the output of a convolutional layer within the VGG16 was 

Fig. 3. The structure and flowchart of an enhanced Faster R-CNN in this paper.  
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utilized as a feature map for further analysis and processing. According 
to the description of feature maps in (Ren et al., 2016), a thermal image 
with a resolution of 640 × 512 would result in a feature map with a 
resolution of 40 × 32. The average small object size in thermal images in 
this paper is around 30 × 30 pixels. Through the process of feature map 
extraction, its feature information is condensed to 2 × 2 pixels, resulting 
in a significant deficiency of spatial feature information necessary for 
accurate detection of small objects in thermal images. To address this 
problem, one commonly employed approach is to select a convolutional 
layer in a CNN model that can produce high-resolution feature maps. 
However, high spatial feature information in a feature map often 
pocesses low semantic feature information. A feature map with low se
mantic features has negative effects on bounding box regression and 
object classification. To overcome this issue, Feature Pyramid Network 
(FPN) was used to fuse feature information extracted from different CNN 
layers. Compared with VGG16, Residual networks exhibit superior ca
pabilities in feature extraction and hierarchical feature representation. 
Residual networks can effectively generate feature maps at various 
scales, contributing to a more nuanced and comprehensive under
standing of the feature information of small objects. Therefore, the 
integration of FPN and residual neural networks is used in this paper. 
Specifically, residual neural networks are used to generate feature maps 
in different scales. Then FPN is used to combine low-resolution, 
semantically strong features with high-resolution, semantically weak 
features via a top-down pathway and lateral connections across the 
feature maps. 

The family of residual neural networks includes ResNet18, ResNet34, 
ResNet50, ResNet101, and ResNet152 according to their number of CNN 
layers. “Stage” is an important term in the context of residual neural 
networks, which refers to a specific set of convolution layers that output 
feature maps with different resolutions. Take ResNet152 as an example 
in (Fig. 4), it consists of five stages (Conv1, Layer1, Layer2, Layer3, and 
Layer4) and each stage can produce a feature map. The spatial resolution 
of each feature map is progressively reduced by a factor of 2, while the 
number of bands is simutanously increased by a factor of 2. Usually, the 
traditional FPN neglects the feature maps from Conv1, Layer1 and Layer 
2 and only incorporates the two feature maps from Layer 3 and Layer 4. 
For the detection of large objects from high-resolution true-color im
ages, this may work well. However, for the small objects in UAV thermal 
images, the spatial feature information left in the two feature maps 
produced by Layer 3 and Layer 4 may be deficient for accurate detection 
of small objects. Therefore, all five feature maps produced by Conv1, 
Layer1, Layer2, Layer3, and Layer4 are utilized in the creation of the 
final multi-scale feature maps through FPN in this research. Notably, the 
feature maps extracted from Conv1 and Layer1 exhibit higher spatial 
resolution and retain more valuable information related to small objects 
compared to the other feature maps. The inclusion of the feature maps 
from Conv1, Layer1, and Layer2 allows the model to obtain additional 

spatial information from their outputs, enhancing the accuracy of small 
object detection in thermal images. 

For example, the structure of FPN based on ResNet152 
(ResNet152FPN) is shown in Fig. 5. The bottom-up pathway involes 
generateing output feature maps from various stages of the network (Lin 
et al., 2016), which are denoted as {C1,C2,C3,C4,C5}. To merge fea
tures extracted from different stages along top-down pathway, the Ci(i =
1, 2,3, 4) map undergoes an upsampling process, increasing its resolu
tion by a factor of 2. The upsampled output is then combined with the 
corresponding bottom-up feature map Cj(j = 2, 3,4, 5) using element- 
wise addition. This merging operation allows for the integration of 
high-resolution details from the upsampled map with the existing fea
tures. In order to mitigate the potential aliasing artifacts resulting from 
the merging operation, a 3 × 3 convolutional operation is applied to 
each merged map to generate the final feature map. For example, C5 is 
the output of Layer4 and is upsampled by a factor of 2 denoted by D5. 
The output of Layer3 undergoes a 1 × 1 convolutional layer to reduce its 
channel dimensions to be same with C5 denoted by E4. By element-wise 
addition, M4 is generated and satisfies with the equation of M4 = D5 +

E4. Then, by a 3 × 3 convolutional operation, the feature map P4 is 
created. Then, M4 is downsampled by a factor of 2 to be D4. The output 
of Layer2 undergoes a 1 × 1 convolutional layer to generate E3. By 
element-wise addition, M3 is generated and satisfies with the equation of 
M3 = D4 + E3. Similarly, M2 and M1 can be generated and satisfy the 
following equations: M2 = D3 + E2 and M1 = D2 + E1. Subsequently, by 
3 × 3 convolutional operations, M1, M2, M3, and M4 are used to generate 
four feature maps denoted by P1, P2, P3, and P4. Finally, P5 is generated 
by downsampling P4. Five feature maps are resulted and denoted as 
{P1,P2, P3, P4, P5}. These feature maps are then respectively inputted 
into RPN to generate region proposals and perform bounding boxes 
regression. 

3.3. Customized anchor boxes 

The concept of anchor boxes was initially introduced by (Ren et al., 
2016). Anchor boxes can be defined as a set of bounding boxes with 
predefined scales and aspect ratios. These anchor boxes are evenly 
distributed across a feature map, strategically covering different posi
tions. During the object detection process, each anchor box, is projected 
back onto the original image for comparison with the ground-truth 
bounding boxes, which define the true object locations. By establish
ing a set of anchor boxes with various scales and aspect ratios, an object 
detection model can gain flexibility in capturing objects of various sizes 
and shapes within the image. These anchor boxes serve as reference 
templates that provide spatial context to guide the subsequent detection 
process. 

The intersection of union (IoU) between an anchor box and a ground- 
truth bounding box is used to estimate whether the anchor’s position is 

Fig. 4. The structure of ResNet152 Feature Extractor.  
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the target’s position. Suppose that A denotes an anchor box and B de
notes a ground-truth bounding box, the algorithm of IoU is given by the 
following equation. 

IoU =
A ∩ B
A ∪ B

(1) 

The IoU between an anchor box and a ground-truth box serves as a 
primary measure of their proximity. Intuitively, with the increasing of 
the IoU, object A becomes more like object B. Generally, the IoU 
threshold is typically set to 0.5. When the IoU of an anchor box is <0.5, it 
is considered not to enclose the target. Conversely, if the IoU is equal to 
or >0.5, the anchor box is selected as a RoI for the subsequent bounding 
box regression. In original Faster R-CNN (Ren et al., 2016), three scales 
(
1282,2562, 5122

)
and three aspect ratios (0.5,1, 2) are used to yield 9 

anchor boxes for each sliding. However, the animal objects in UAV 
thermal images are small and the average size is approximate to be 30 ×

30 pixels, as shown in Fig. 6. When employing the anchor boxes defined 
in (Ren et al., 2016), the IoU values of anchor boxes tend to be <0.5. 
Therefore, these anchor boxes will be discarded, causing many small 
deer objects to be missed by the original Faster R-CNN. To address this 
problem, two tactics are employed in this paper. Firstly, the sizes of 
anchor boxes are systematically reduced. Secondly, the number of an
chor boxes is increased at each position. Specifically, the anchor box 
scales are customized to be 

(
42,82, 162, 322, 642

)
, while keeping the 

aspect ratios the same. Therefore, at each position in a feature map, 15 
different region proposals can be created. As shown in Fig. 7, the new 
strategies can ensure that at least one of the 15 region proposals in
tersects the ground-true bounding box and the corresponding IoU value 
is >0.5, enhancing the ability of the proposed model to capture and 
detect small objects from UAV thermal images. 

Additionally, the bounding box regression in this paper is defined as 
the following. 

tx =
Gx − Ax

Aw  

ty =
Gy − Ay

Ah 

Fig. 5. The structure of FPN based on ResNet152.  

Fig. 6. An example of using anchors to detect deer. The red rectangle is a 
ground-truth bounding box, and the green rectangles are the anchors generated 
by three scales 

(
1282,2562,5122) and three aspect ratios (0.5, 1, 2.) (For 

interpretation of the references to colour in this figure legend the reader is 
referred to the web version of this article.) 
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tw = log
(

Gw

Aw

)

th = log
(

Gh

Ah

)

(2)  

(
Ax,Ay

)
and 

(
Gx,Gy

)
are the centers of a predicted anchor A and a 

ground-truth bounding box G respectively, and (Aw,Ah) and (Gw,Gh)

denote the width and height of a RoI A and a ground-truth bounding box 
G respectively. Strictly speaking, the transformation equation (Eq. (2)) 
exhibits non-linearity. However, when a RoI is similar enough to its 
corresponding ground-true box, Eq. (2) can be treated as a linear 
regression. Conversely, when a RoI and its ground-true box are signifi
cantly different, Eq. (2) poses a complex non-linear regression problem, 
making it very difficult to align a RoI with a ground-truth bounding box 
accurately. For example, as shown in Fig. 7, the red rectangle represents 
a ground-true box including a deer object. The green rectangles denote 
the customized anchor boxes. Among these, there is at least one anchor 
box, and its IoU value with the red rectangle is >0.5, which means 
proximity in shape, location, and size to a ground-truth box. In this case, 
Eq. (2) can be conceptualized as bounding-box regression from an an
chor box to a nearby ground-truth box. Based on tx, ty, tw, and th, a loss 
function can be defined to facilitate the adjustment of an anchor box, 
aligning it with its corresponding ground-truth box (depicted as the red 
rectangle in Fig. 7). The adjustment is achieved through the process of 
backpropagation within a neural network. The loss function is instru
mental in quantifying the disparity between the predicted and actual 
bounding box. By minimizing this disparity during training through 
backpropagation, the neural network learns to improve the accuracy of 
predicting anchor box positions. This iterative optimization process 
ensures that the model adapts its anchor boxes to closely match the 
ground-truth boxes, enhancing the overall precision of object detection 

in the training phase. 

3.4. Criterion for multi-scale feature map selection 

In the original Faster R-CNN, only a single feature map is utilized, 
and all RoIs acquire their feature information from this common source. 
Thus, there is no ambiguity in feature map selection. However, utilizing 
a FPN built upon a residual neural network, it becomes possible to 
extract five feature maps with different resolutions from a thermal 
image captured by a UAV. Based on the small anchor boxes defined in 
Section 3.3, RPN can utilize these multi-scale feature maps to predict 
RoIs with various aspect ratios, leading to improved detection perfor
mance of small objects. However, when utilizing Fast R-CNN, as illus
trated in Fig. 3 (b), for classifying these RoIs, a question arises: for a 
given RoI, which feature map should be selected to provide the feature 
information? Normally, the criterion is mainly based on the scale, size, 
and spatial characteristics of each RoI. In general, a larger RoI is 
assigned to a smaller-scale feature map, while a smaller RoI is assigned 
to a larger-scale feature map. 

As shown on the top of Fig. 8, a feature map extractor based on FPN 
and ResNet152 extracted five feature maps from the original UAV 
thermal image, and they each has different resolutions, including 256 ×
320, 128 × 160, 64 × 80, 32 × 40, and 16 × 20. The region proposal 
network can utilize the five feature maps to generate four RoIs with 
different sizes, which are respectively colored by purple, red, green and 
yellow from left to right in the middle-right of Fig. 8. The size of the 
purple RoI is the largest, and the model assigns a feature map with the 
resolution of 32 × 40 to it. On the contrary, the red RoI is the smallest, 
and the model selects the feature map with highest spatial resolution for 
it. Similarly, the green and yellow RoIs are assigned corresponding 
feature maps according to their respective sizes. The selection of large 
feature maps means the number of parameters is increasing and needs 
more time for training and detection, while the selection of small feature 
maps implies reducing the number of parameters and having faster 
detection speed. By this means, the model in this paper is allowed for a 
trade-off between detection accuracy and performance. 

Based on the number of feature maps k, the RoI width w, and the RoI 
height h, a multi-scale feature map assignment criterion is expressed by 
the following equation: 

index = floor
(

k+ log2

( ̅̅̅̅̅̅̅̅̅̅̅̅
w × h

√ /
λ
))

if
̅̅̅̅̅̅̅̅̅̅̅̅
w × h

√
≥ λ,

̅̅̅̅̅̅̅̅̅̅̅̅
w × h

√
= λ (3)  

index is an integer value ranging from 1 to k, which denotes the index of 
the chosen feature map. For instance, the resolutions of the five feature 
maps on the top of Fig. 8 are 256 × 320, 128 × 160, 64 × 80, 32 × 40, 
and 16 × 20 respectively, and their indices are 1, 2, 3, 4, and 5 
respectively. λ in Eq. (3) is a canonical adjustment parameter introduced 
in (Lin et al., 2016, 2018). When the square root of a RoI area is equal to 
or more than λ, it is regarded as a big object and assigned to the feature 
map with low spatial resolution. For example, the canonical pre-training 
size of the ImageNet Dataset is 224 pixels, therefore, most of the object 
detection models trained by the ImageNet dataset or true-color imagery 
usually set the value of λ to be 224. However, λ = 224 is not suitable for 
the detection of small objects in the UAV thermal images. λ is a empir
ically determined threshold. Therefore, λ in this paper was set to be 320 
based on trials and errors. 

4. Experiment 

Based on different residual networks, five different FPNs were con
structed, which are respectively named ResNet18FPN, ResNet34FPN, 
ResNet50FPN, ResNet101FPN, and ResNet152FPN. Each FPN serves as a 
backbone network to generate multi-scale feature maps. By the five 
FPNs, five different object detection models based on Faster R-CNN are 

Fig. 7. An example of using 15 anchors to detect deer in this paper. The red 
rectangle is a ground-truth bounding box, and the green rectangles are the 
anchors generated by three scales 

(
42,82,162, 322,642) and three aspect ratios 

(0.5, 1, 2) (For interpretation of the references to colour in this figure legend the 
reader is referred to the web version of this article.) 

H. Lyu et al.                                                                                                                                                                                                                                     



Ecological Informatics 79 (2024) 102383

9

constructed, and they are respectively named as FRC_ResNet18FPN, 
FRC_ResNet34FPN, FRC_ResNet50FPN, FRC_ResNet101FPN, and 
FRC_ResNet152FPN. In this section, we utilized the same thermal im
agery dataset collected in the Chitwan National Park of Nepal to indi
vidually train each of the five object detection models. Subsequently, we 
conducted a comprehensive comparison of their performance of small 
deer object detection based on the COCO detection evaluation matrix 
(Padilla, Netto, and da Silva 2020). This evaluation aims to identify the 
most effective object detection model for wild deer surveys from UAV 
thermal images. 

4.1. Data allocation 

The wild deer survey in this paper was conducted in several con
servation areas for wild deer in the Chitwan National Park of Nepal. The 
study areas are covered by riverine mixed forests and riparian grass
lands, and the average temperature stays stable in a year ranging from 
18 to 36C. Mavic 2 Enterprise Advanced DJI Drones, equipped with a 
thermal camera and a true-color camera fully stabilized by a 3-axis 
gimbal, were used to monitor wild deer. A total of 22,478 thermal im
ages were captured, but not all these images contain wild deer. In order 

Fig. 8. The process that multiple-scale feature maps are assigned to the RoIs based on their resolutions.  
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to construct a UAV thermal image dataset for the training and validating 
the object detection models, 5000 thermal images that are likely to 
contain wild deer were manually soughted and each deer object was 
annotated by rectangles. Although this task was both time-consuming 
and labor-intensive, it is an indispensable process to build an auto
matic model for estimating the population of wild deer in the future. To 
ensure the precision of the annotations, two experienced scientists from 
the Center for Complex Human-Environment Systems in San Diego State 
University, along with two students from the University of Texas at 
Dallas, were employed. At first, the two scientists independently filtered 
the images by meticulously identifying the images including deer. 
Subsequently, the two students utilized ‘ImageLab,’ a freely available 
online image annotation tool, to label the precise locations of deer ob
jects . Secondly, the two scientists then double checked all the annota
tions, cross-verifying against each other to determine whether an 
annotation should be considered as a ground truth or should be 

discarded. This verification process aims to prevent subjective biases 
and ensure the accuracy and reliability of the annotations. As a result, a 
comprehensive dataset consisting of 2278 thermal images and 13,509 
deer instance annotations was constructed. The entire process took 
approximately seven days, with the two scientists and two students each 
dedicating four hours each day to complete the task. 

The number of deer instances in each image varies, ranging from 1 to 
72. The frequency histogram illustrating this distribution is depicted in 
Fig. 9, and an example image containing 72 deer annotations is dis
played in Fig. 10. According to Fig. 9, it is evident that the distribution of 
deer numbers across the different images in the dataset is unbalanced, 
which may raise concerns if the dataset is randomly divided into 
training, validation, and testing subsets. To address this issue, the 
dataset is initially divided into separate subsets based on the number of 
deer in each image. Within each subset, the images are further parti
tioned into three sections using a ratio of 75:15:15. Subsequently, the 

Fig. 9. The histogram of number of deer instances in the dataset. The number of bins is 20.  

Fig. 10. An example of deer annotation. There are 72 deer in the left image. The 72 deer are annotated by ImageLab as shown in the right image.  
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images from different sections are combined to form three distinct 
datasets, which are respectively allocated for training, validation, and 
testing. By employing this approach, we ensure that each data set 
maintains a balanced distribution of deer instances. 

4.2. Model evaluation criterion 

To ensure a comprehensive assessment of the performance of models 
in this study, COCO detection evaluation matrix is adopted, and Average 
Precision (AP) and Average Recall (AR) are used to estimate the per
formance of different models (Padilla et al., 2020). AP and AR are 
computed based on the IoU thresholds ranging from 0.5 to 0.95 with a 
step size of 0.05, which accounts for varying levels of overlap between 
predicted and ground truth bounding boxes. AP provides a measure of 
the model’s accuracy in positive predictions, focusing on the avoidance 
of false positives. It assesses how well the model’s positive predictions 
align with the ground truth. On the other hand, AR measures the model’s 
ability to correctly identify all positive instances, emphasizing the 
avoidance of false negatives. It evaluates how well the model captures 
all objects of interest. The AP and AR can offer insights into the model’s 
precision and recall trade-offs, providing a method to assess the overall 
effectiveness of a model. 

According to COCO detection evaluation matrix, all objects are 
categorized into three levels based on their sizes, including Large, Me
dium, and Small. The distribution of bounding box areas within the UAV 
image dataset in this paper is shown in Fig. 11. In fact, there is not a 
strict definition for Small Object, Medium Object, and Large Object. The 
criteria introduced in (Chen et al., 2017; Tong et al., 2020; Zhu et al., 
2016) are widely accepted and are also adopted in this research. Based 
on the criteria, small objects are characterized by bounding boxes with 
an area range from 0 to 200 pixels. Medium objects are characterized by 

bounding boxes with an area range from 200 to 400 pixels. Large objects 
are characterized by bounding boxes with an area exceeding 400 pixels. 
The details on the number and ratio of Small Object, Medium Object, 
and Large Object in the UAV imagery in this paper are shown in Table 2. 
In Fig. 12, three example images are provided to show what small, 
medium, and large deer objects are like. 

4.3. Experiment results analysis 

By utilizing the five FPNs and small-scale anchor boxes 
(
42,82, 162, 322, 642), we constructed five deer object detection models 

based on Faster R-CNN, namely FRC_ResNet18FPN, FRC_ResNet34FPN, 
FRC_ResNet50FPN, FRC_ResNet101FPN, and FRC_ResNet152FPN. For 
short, we also used M1, M2, M3, M4, and M5 to denote these five object 
detection models respectively in Table 3. The 13,509 deer objects were 
divided into the training set (9,115 objects), testing set (2,197 objects) 
and validation set (2197 objects). The average precision for small, me
dium, and large objects based on the test set as shown in Table 3. 

IoU ≥ 0.5 means that it will be a true positive prediction only when 
the IoU value between a predicted bounding box and its corresponding 
ground-true bounding box is greater than or equal to 0.5. 0.5 ≤ IoU ≤

0.95 means ten IoU thresholds ranging from 0.5 to 0.95 with a step size 
of 0.05, and ten precisions for different ranges can be calculated, and 
then compute the mean of the ten values. This comprehensive evalua
tion accounts for varying levels of overlap between predicted and 
ground truth bounding boxes, which is often used to evaluate how well 
the bounding boxes generated by models fit corresponding objects. Ac
cording to the results in Table 3, the performance of both FRC_Res
Net18FPN and FRC_ResNet152FPN is very close and surpasses that of 
the remaining three models. Under the condition of IoU ≥ 0.5, the AP of 
the five models is shown in Fig. 13. 

As shown in Table 3, the five models share a common characteristic. 
The Average Precision (AP) demonstrates a progressive decrease as the 
size of the objects being detected decreases. Generally, the detection of 
large deer objects tends to yield higher AP, as these objects are relatively 
easier to discern and locate accurately within the thermal images. As the 
size of deer objects decreases, the detection task becomes more chal
lenging, leading to a decrease in the AP for both medium and small deer 
objects. In addition, AP is often sensitive to the IoU threshold, and strict 

Fig. 11. The area histogram of the bounding boxes of deer objects in our dataset. The number of bins is 100.  

Table 2 
The categorization criteria for deer objects based on their bounding boxes.  

Level name Range of area Number Ratio 

Small Objects 100–200 3575 26.5% 
Medium Objects 200–400 6721 49.8% 

Large Objects 400–100,000 3213 23.7%  
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criteria for overlap between predicted and ground true bounding boxes 
result in low AP values. Therefore, as the IoU threshold value increases, 
the AP of models also demonstrates a decreasing trend. Thus the AP 
under the condition of 0.5 ≤ IoU ≤ 0.95 is less than that under the 
condition IoU ≥ 0.5. According to Table 3, the FRC_ResNet18FPN ach
ieves the best detection performance for medium objects (like in Fig. 12 
(b)) with an AP of 93.4%, and the model FRC_ResNet34FPN has the best 
detection performance for large objects (like in Fig. 12 (c)) with an AP of 
94.6%, which is only marginally higher by 0.3% compared to the 
FRC_ResNet18FPN, which obtains an AP of 94.3% for large objects. 
Generally, in deep convolutional neural networks (CNNs), the spatial 
resolution of feature maps typically diminishes with the increasing of 
layer depth. For small objects, their spatial features may become highly 
compressed, reducing to only a few pixels in deeper CNN layers. For 
instance, an object with dimensions of 15 × 15 pixels in a UAV thermal 
image might be represented by just 1 pixel in the feature map from Layer 
4 of ResNet152 (refer to Fig. 4). The limited spatial resolution can lead to 
loss of fine details, making it difficult for the model to distinguish small 
objects from the background. Through FPN, different feature maps from 
different layers can complement each other, and deeper feature map can 
receive some spatial information from shallower layers. However, still 
certain spatial features might have been lost during the process of 
convolution operations. Consequently, the models of FRC_ResNet18FPN 
and FRC_ResNet34FPN can obtain higher AP for medium and large ob
jects than the remaining models because they have less CNN layers than 
others. Notably, the FRC_ResNet152FPN obtains the best detection 
performance for small objects (Fig. 12 (a)) with an AP of 78.3%, which is 
explicitly higher than other models. Specifically, the AP of FRC_Res
Net152FPN is approximately 5% higher than that of FRC_ResNet18FPN 
and 8% higher than that of FRC_ResNet34FPN. According to Table 2 and 
Fig. 12 (a), the sizes of small objects in the UAV imagery in this paper are 
<200 pixels, and the related spatial information is possibly not enough 

for a model to detect and identify them. Under this condition, more CNN 
layers mean that more abstractly semantic information can be extracted. 
Therefore, FRC_ResNet152FPN has more advantages than others in this 
sense. 

For example, as shown in Fig. 14 (a), there are seven large deer 
objects in the UAV thermal image. The detection results of FRC_Res
Net18FPN, FRC_ResNet34FPN, FRC_ResNet50FPN, FRC_ResNet101FPN, 
and FRC_ResNet152FPN are depicted in Fig. 14 (b), Fig. 14 (c), Fig. 14 
(d), Fig. 14 (e), and Fig. 14 (f) respectively. The five models all suc
cessfully detect the seven deer object. However, FRC_ResNet18FPN and 
FRC_ResNet152FPN stand out by fitting the ground-truth bounding 
boxes more accurately compared to the other models. Certainly, there 
are also some UAV thermal images that the five models failed to detect 
all the objects. For example, as shown in Fig. 15, a thermal image has 17 
deer objects. In this case, FRC_ResNet18FPN detects 15 deer objects, 
FRC_ResNet34FPN detects 11 deer objects, FRC_ResNet50FPN detects 
12 deer objects, FRC_ResNet101FPN detects 14 deer objects, and 
FRC_ResNet152FPN detects 16 objects. In addition, as depicted by the 
yellow arrows in Fig. 15 a, the two close deer objects were not detected 
by all the five models. 

In Fig. 16 (a), there are four small deer objects annotated by red 
rectangles, and there are also two deer objects that are not annotated 
intentionally, as indicated by two arrows. The detection results and 
corresponding IoU values generated by FRC_ResNet18FPN, FRC_Res
Net34FPN, FRC_ResNet50FPN, FRC_ResNet101FPN, and FRC_Res
Net152FPN are depicted in Fig. 16 (b), Fig. 16 (c), Fig. 16 (d), Fig. 16 (e), 
and Fig. 16 (f) respectively. All models can detect the four deer objects. 
FRC_ResNet18FPN and FRC_ResNet34FPN can also detect the two un
labeled deer objects. However, FRC_ResNet34FPN generates three extra 
false positive objects. From the perspective of IoU, the bounding boxes 
predicted by FRC_ResNet152FPN can fit the objects best. However, 
FRC_ResNet18FPN has better generalization ability than others in terms 

(a) (b) (c)

Fig. 12. (a) an example of small deer objects; (b) an example of medium deer objects; (c) an example of large deer objects.  

Table 3 
The COCO detection evaluation matrix of the five object detection models. M1 denotes FRC_ResNet18FPN. M2 denotes FRC_ResNet34FPN. M3 denotes FRC_Res
Net50FPN. M4 denotes FRC_ResNet101FPN. M5 denotes FRC_ResNet152FPN.   

IoU Object Size M1 M2 M3 M4 M5 

Average Precision IoU ≥ 0.5 All 91.6% 90.2% 90.4% 88.2% 90.4% 
Small 73.6% 70.6% 76.3% 68.4% 78.3% 
Medium 93.4% 90.3% 90.8% 88.6% 91.1% 
Large 94.3% 94.6% 92.6% 93.8% 92.2% 

0.5 ≤ IoU ≤ 0.95 All 44.1% 43.4% 44.4% 42.6% 44.2% 
Small 33.4% 31.2% 35.8% 30.4% 34.1% 
Medium 42.6% 38.7% 41.8% 38.2% 41.1% 
Large 47.1% 48.1% 47.6% 48.3% 48.5% 

Average Recall 0.5 ≤ IoU ≤ 0.95 All 47.1% 48.2% 47.6% 48.3% 48.5% 
Small 50.4% 50.9% 50.4% 44.8% 46.9% 
Medium 53.1% 52.3% 53.8% 51.9% 53.7% 
Large 54.5% 54.4% 54.7% 54.4% 54.7%  
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of identifying unseen objects. 
In addition, we explore the impact of different scales of anchor boxes: 

our customized anchor boxes 
(
42,82,162,322, 642) and the commonly 

used big-scale anchor boxes 
(
1282,2562,5122). A thermal image con

taining 30 deer objects was used as an example. The model FRC_Res
Net152FPN configured with big-scaled anchor boxes was able to detect 
27 out of the 30 deer objects. However, three deer objects were over
looked, as highlighted by red arrows in Fig. 17 (a). On the contrary, the 
model FRC_ResNet152FPN equipped with the small-scaled anchor boxes 
exhibited a notably better outcome, successfully identifying and locating 
all 30 deer objects present in Fig. 17 (b). The experiment results show 
that using customized anchor boxes is helpful for the models to enhance 
their abilities of small object detection. 

5. Discussion 

5.1. Contributions 

With the development of deep learning, research on object detection 
for wild deer surveys from high-resolution and true-color images has 
made remarkable progress. However, the research of detecting small 

deer objects in thermal imagery captured by UAVs remains relatively 
unexplored. Generally, in an object detection model based on deep 
learning, convolutional neural networks (CNNs) are adopted to extract 
feature maps from original images. The process of feature map extrac
tion is through progressively downscaling. For the large deer objects, 
their abstract feature information can be kept in the final feature maps. 
However, for the small deer objects, their feature information often 
disappears during the process of feature map extraction, which is the 
main reason that small object detection is always challenging. In this 
paper, the integration of Faster R-CNN, FPN and residual networks is 
introduced to solve the problem of wild deer surveys from thermal im
ages. To address the problem that the feature information of small deer 
objects disappearing during the process of feature map extraction, a 
Feature Pyramid Network (FPN) (Lin et al., 2016; Liu and Wang, 2021) 
is used to fuse the spatial feature information, derived from the different 
CNN layer of a residual network, to construct multiple feature maps for 
the detection of deer objects with different scales. At the same time, 
small-scaled anchor boxes were designed to serve as reference templates 
to provide more suitable spatial context to guide the detection process of 
small objects. Specifically, rather than employing commonly used large 
anchor boxes 

(
1282,2562,5122), customized anchor boxes 

(
42,82, 162, 322, 642) were utilized to generate the regions of interest 

Fig. 13. The average precision of M1, M2, M3, M4, and M5. M1 denotes FRC_ResNet18FPN. M2 denotes FRC_ResNet34FPN. M3 denotes FRC_ResNet50FPN. M4 
denotes FRC_ResNet101FPN. M5 denotes FRC_ResNet152FPN. 
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Fig. 14. (a) denotes the original image with the ground-true bounding boxes marked in red. (b) denotes the output of FRC_ResNet18FPN. (C) denotes the output of 
FRC_ResNet34FPN. (d) denotes the output of FRC_ResNet50FPN. (e) denotes the output of FRC_ResNet101FPN. (f) denotes the output of FRC_ResNet152FPN. 

Fig. 15. (a) denotes the original image with the ground-true bounding boxes marked in red. (b) denotes the output of FRC_ResNet18FPN. (C) denotes the output of 
FRC_ResNet34FPN. (d) denotes the output of FRC_ResNet50FPN. (e) denotes the output of FRC_ResNet101FPN. (f) denotes the output of FRC_ResNet152FPN. 
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(RoIs) based on feature maps at varying scales, which can enhance our 
model’s capability to effectively detect small deer objects within ther
mal images. Finally, based on Faster R-CNN, FPN, and different residual 
networks including ResNet18, ResNet34, ResNet50, ResNet101, and 
ResNet152 (Ganesan and Santhanam, 2022; He et al., 2016), we con
structed five object detection models, and used the dataset to evaluate 
their detection performance by the COCO evaluation matrix. Our 
research endeavor is helpful for effective wild deer monitoring and 
conservation, providing valuable insights into deer populations in the 
Chitwan National Park of Nepal. The research outcomes can be a valu
able reference for the exploration of small object detection from low- 
resolution thermal images. 

5.2. Future work 

Developing a detection model with the capability to handle various 
animal types in thermal imagery is a significant and promising direction 
for future research. Currently, our study focused only on deer detection 
due to limitations of data coverage. Multiple field research teams, sup
ported by the same project, are exploring DJI drones images to also 
survey wild elephants, buffalos, rhinos, and wild boars in other areas of 
Chitwan National Park of Nepal. Wild animals in thermal imagery often 
exhibit relatively small sizes and similar shapes, which also pose addi
tional challenges. Therefore, our future work is to construct an object 
detention model to automatically detect different small wildlife objects 
from thermal images and identify their species at the same time. 

Fig. 16. (a) denotes the original image with the ground-true bounding boxes marked in red. (b) denotes the output of FRC_ResNet18FPN. (C) denotes the output of 
FRC_ResNet34FPN. (d) denotes the output of FRC_ResNet50FPN. (e) denotes the output of FRC_ResNet101FPN. (f) denotes the output of FRC_ResNet152FPN. 

Fig. 17. (a) The detection results from the model using big-scale anchor boxes. (b) The detection results from the model using small-scale anchor boxes. The three red 
arrows point at the objects missed by the model in (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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In addition, it is always important to explore methods to enlarge the 
feature information of a thermal image, especially for small animal 
objects detection and their species identification. DJI has released ten 
professional palettes designed to improve object features with varying 
temperatures in thermal images. Therefore, we hope to find some 
methods to transform a thermal image to multiple layers of images with 
different thermal palettes, and then to fuse feature information from 
these layers, which may further improve the performance of small ani
mal objects detection. 

Finally, as depicted by the yellow arrows in Fig. 15 (a), the two 
closely located deer objects were not detected by all the five models. For 
current object detection models, detecting close objects remains very 
challenging. This is due to the limitation of the Non-Maximum Sup
pression (NNS) algorithm. NMS relies on the Intersection over Union 
(IoU) threshold to determine whether two bounding boxes are consid
ered duplicates or not. When objects are very close to each other, their 
bounding boxes may significantly overlap, leading to high IoU values. As 
a result, NMS may remove one of the objects, making it challenging for 
the model to detect both objects accurately. Therefore, new algorithms 
should be developed to solve the problem in the future. 

6. Conclusion 

Wild deer surveys are essential for wildlife management and con
servation. By accurately estimating the number of deer, wildlife au
thorities and conservationists can better understand the health of the 
deer population, their interactions with other species, and their impact 
on the ecosystem. In the Chitwan National Park of Nepal, the dense 
coverage of tall trees and vegetation often obscures the presence of wild 
deer, making it very difficult to use normal true-color images to monitor 
deer. In our project, UAVs equipped with thermal cameras were used to 
monitor deer. However, thermal images have obvious limitations, such 
as lack of fine details, reduced spatial resolution, and limited spectral 
information. It is difficult to directly apply the traditional Faster R-CNN 
to detect deer objects in thermal images. In this paper, an enhanced 
Faster R-CNN based on FPN, residual networks and customized anchor 
boxes is proposed to detect small objects from UAV thermal images for 
wild deer survey in the Chitwan National Park of Nepal. 

Specifically, based on Faster R-CNN, FPN, and different residual 
networks including ResNet18, ResNet34, ResNet50, ResNet101, and 
ResNet152, five models are constructed. UAV thermal imagery 
including 2278 thermal images and 13,509 deer instance annotations 
were established to train, validate and test these models. At the same 
time, according to the sizes of deer objects, 13,509 deer instances are 
further divided into three categories: Small, Medium, and Large. Small 
objects are characterized by bounding boxes with an area range from 
0 to 200 square pixels. Medium objects are characterized by bounding 
boxes with an area range from 200 to 400 square pixels. Large objects 
are characterized by bounding boxes with an area exceeding 400 square 
pixels. Finally, the COCO object estimation matrix was used to assess the 
performance of the five models. The COCO evaluation results revealed 
that under the condition of IoU ≥ 0.5, the integration of Faster R-CNN, 
FPN, and ResNet18 is proved to be better than others, and achieved an 
Average Precision (AP) score of 91.6% for all deer objects. Specifically, 
the model obtained an AP score of 73.6% for small deer objects (area ≤
200 pixels), an AP score of 93.4% for medium deer objects (200 < area 
≤ 400 pixels), and an AP score of 94.3% for large deer objects (area >
400 pixels). 
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