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Abstract
With traditional survey methods such as ground-based counting, camera trapping, 
and aerial surveys, monitoring wild deer in Nepal’s Chitwan National Park is chal-
lenging due to the dense tall vegetation that often conceals them. However, the ther-
mal signatures of wild deer contrast sharply against the cooler background, facilitat-
ing detection via thermal imaging. This study explores the use of Unmanned Aerial 
Vehicles (UAVs) equipped with thermal cameras to monitor wild deer. A large vol-
ume of images can be captured, where wild animals appear as small objects. Review-
ing these images manually is labor-intensive and time-consuming. To address this, 
we developed an object detection model using modified Faster R-CNN that auto-
matically identifies small deer objects in the  thermal images. Instead of VGG 16, 
the Feature Pyramid Network and Residual Neural Network (ResNet152) were 
employed to enhance feature extraction from these images, constructing multi-scale 
feature maps that enrich the feature information for small object detection. Custom-
ized anchor boxes were also designed to handle the wide variation in object scale 
and aspect ratios. To improve species identification accuracy for small Regions of 
Interest, a multi-scale aggregation method was proposed, which fuses features from 
multiple feature maps via Multi-scale RoIAlign pooling. The model proposed in this 
paper was evaluated by the COCO metrics. The experimental results obtained for 
the detection of deer and other animals in UAV thermal images with the resolution 
of 640 × 512 , showing mean Average Precision of 92.3% for all objects, 78.9% for 
small objects, 94.6% for medium objects, and 95.8% for large objects. This research 
provides a valuable means for detecting small objects in thermal images and contrib-
utes significantly to the field of wildlife monitoring.
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1 Introduction

The urgency to conserve wildlife could never been more emphasized, especially in 
areas of rich biodiversity such as Chitwan National Park of Nepal, designated as a 
World Heritage site by UNESCO since 1984. The park covers an expanse of roughly 
952,63 square kilometers and harbors a rich tapestry of ecosystems ranging from 
dense forests and marshlands to rippling grasslands. It’s a vital stronghold for a vari-
ety of species including the majestic Asian elephant, the one-horned rhinoceros, var-
ious deer species, and the wild buffalo and so on. In the intricate web of the Park’s 
ecosystem, wild deer stand as pivotal characters. Their role extends beyond mere 
presence; as primary herbivores, they are instrumental in the regulation of vegeta-
tion through their grazing habits, aiding in seed dispersal and plant growth. This in 
turn sculpts the landscape, affecting the myriad of other plant and animal life within 
the park. Moreover, as essential prey for predators like tigers and leopards, wild deer 
are also critical to the balance of predator–prey dynamics that underpin ecological 
stability [1]. Therefore, it becomes very important to regularly monitor wild deer 
and estimate the deer population, which can benefit the wildlife management and 
conservation in the park.

As for now, several survey methods, including ground-based counting, camera 
trapping, and remote sensing monitoring, have been proposed to monitor wild deer. 
Each has its advantages and disadvantages. For example, ground-based counting 
offers the direct  observation of wild deer population and estimation  through the 
signs left by them, such as tracks and poop [16] as shown in Fig. 1a. However, Deer 
are notably vigilant and tend to avoid humans, complicating the task of achieving 
accurate counting [11]. Camera trapping automates the photo-taking process, which 
can be used to capture wild animals when they trigger sensors as shown in Fig. 1b. 
This method does not disturb wild animals or alter their natural behaviors, and can 
provide continuous data collection over extended periods, regardless of weather or 
time of day. However, camera traps are fixed installations, and their placement often 
relies on human judgment or prior knowledge, which may introduce bias. This could 
lead to the overrepresentation of certain areas or species, or underrepresentation and 
even the complete omission of some. Remote sensing technologies are also used in 
wild animal surveys, like using manned aircraft or satellites to conduct wild ani-
mal census. [9] utilized a manned helicopter to monitor and estimate the wild deer 

Fig. 1  a A wildlife biologist approaches a moose to do ground-based moose survey. ADFG 
photo. (KTUU) By Grant Robinson; b a deer was captured by a camera trapping; c a deer was monitored 
by a helicopter
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populations in the Sierra Nevada as shown in Fig. 1c. Compared with ground-based 
counting and camera trapping, this method can provide wider coverage. However, it 
is expensive to rent aircrafts and hire skilled pilots. Wild animals are often disturbed 
by the noise generated by the aircraft.

Among these survey methods, UAV survey gets the best balance, offering con-
venient data collection and lower cost. At present, using UAVs to monitor wild 
animals is becoming more and more popular. Additionally, UAVs can be equipped 
with thermal sensors, enabling the capture of thermal imagery, which is particularly 
beneficial for monitoring wild animals in the areas of the Chitwan National Park of 
Nepal covered by tall vegetation and dense tree canopies. An illustrative example is 
shown in Fig. 2, which presents two images captured simultaneously by a UAV over 
an area containing 10 wild deer, using two different sensor types. Figure 2a displays 
a true-color image with a resolution of 8000 × 6000 pixels, where 3 deer are easily 
visible in an open space near a tree (marked by green rectangles), 3 deer are partially 
visible between tree canopies (yellow rectangles), and four deer are obscured by 
tree canopies (red rectangles) and not visible. Figure 2b showcases a thermal image 
with a resolution of 640 × 512 pixels, where all 10 deer are visible, including those 
under tree canopies, due to their body temperatures being higher than the ambient 
background.

Our research area is in Chitwan National Park, Nepal. Since the park’s land-
scape is predominantly covered by trees and tall grasses, poses a challenge for true-
color sensors due to vegetation occlusion, UAVs mounted thermal cameras were 
chosen to monitor wild deer in our study. UAVs make it much easier to capture wild 
animals, leading to a significant increase in the volume of captured thermal images. 
Consequently, it is more and more impractical to review these images manually 
to count the number of wild animals. Deep learning, which is one of the cutting-
edge techniques, has been wildly  used in the detection of wild animals from ter-
restrial  images. For instance, in [21], ResNet50 was used to detect animals from 
true-color images, and they achieved a classification accuracy of 93.8% on the 

Fig. 2  Four wild deer marked by red boxes were not seen on the 8K true-color image in a due to canopy 
cover, but they were visible on the thermal image in b due to their higher body temperature
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Snapshot Serengeti dataset in Africa. In [3], a pre-trained Faster RCNN based on 
InceptionResNetV2 network was utilized to detect European mammals from high-
resolution images and achieved a detection accuracy of 94%. In [7], YOLOv5 was 
employed to detect Red deer from images captured by cameras, achieving a detec-
tion accuracy of 0.86. These methods can automate the process of wild animal 
detection from images. Among these studies, the advanced object detection mod-
els based on deep learning, like Faster R-CNN and YOLO have gained consider-
able success,  when high-resolution cameras were utilized to capture wild animals 
in areas that are not covered by tall vegetation. The representation of wild animals 
in these high-resolution terrestrial images are large and clear as shown in Fig. 3 so 
that they can provide enough feature information for these models to localize their 
positions and identify their species. However, these models have many limitations in 
the detection of wild animals from thermal images captured by UAVs as shown in 
Fig. 2b. These limitations can be summarized as three research problems.

• Limited feature information: compared with deer objects in high-resolution 
images, the deer objects in thermal images is small and unclear  due to their 
limited resolution, making  it difficult  to provide enough information for object 
detection models to localize their positions.

• Large span of object scale variation: the terrain of our research areas in the 
Chitwan National Park of Nepal is uneven with ups and downs. UAVs often need 
to fly at different altitudes to avoid the top tips of trees. The variability in dif-
ferent flight height results in the thermal imagery with scales of observed wild 
animals varying significantly. For example, the smallest deer object in a thermal 
image in our study is about 100 pixels, and the biggest deer object is beyond 
6400 pixels. The difference is about 64 times, which shows a big challenge for 
current models to detect them.

Fig. 3  The representation of deer in the true-color images captured by high-resolution cameras
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• Species Identification based on RoIs: due to the small size of wild animal 
objects in thermal images, the RoIs associated with these objects are also small, 
making it challenging to extract sufficient features for species identification.

In this paper, an object detection model based on Faster R-CNN was constructed 
to automatically detect wild deer from the thermal images captured by UAVs. Due 
to the  challenge that small size of wild animal objects in thermal images cannot 
provide enough feature information for localization and identification, Feature Pyra-
mid Network (FPN) and Residual Neural Network (ResNet152) instead of the com-
monly used VGG16, were used to extract feature information from thermal images 
to construct multi-scale feature maps. Each feature map can contribute to the quan-
tity of feature information, and by adding the number of feature maps, the problem 
of limited feature information for small object detection can be mitigated. Accord-
ing to the large span of object scale variation, customized anchor boxes were used 
to enable our model to detect the objects across a wide range of scales and aspect 
ratios. To cope with  the difficulty of species identification with small Regions of 
Interest (RoIs), a multi-scale aggregation method was proposed to fuse the fea-
ture of RoIs from multiple feature maps extracted by Multi-scale RoIAlign pool-
ing, which can improve the precision of deer species identification. The rest of the 
paper is organized as follows. Section 2 provides an overview of the history of using 
information technology to automate the task of detecting animals from images. In 
Sect. 3, we describe the details about how to modify the architecture of ResNet152 
and FPN to construct an object detection model based on Faster R-CNN, making it 
more suitable for small object detection from low-resolution thermal images cap-
tured by UAVs. Section 4 discusses the application of the model to a thermal image 
dataset collected from the Chitwan National Park, presenting experimental results 
and analysis. Finally, the paper concludes with a summary of the key findings and 
contributions.

2  Related Work

Over the past decade, using information technology to detect wild animals from 
images has remained  a hot research spot, especially in the field of ecologic infor-
matics. Many methods have been proposed, which have led to significant advance-
ments. These methods can be broadly categorized into two types: pixel-based and 
region-based.

2.1  Pixel‑Based Method

Pixel-based methods involve a series of steps to process the images, including image 
pre-preprocessing, image segmentation, object detection, feature extraction, fea-
ture selection, and object classification. The performance of each stage significantly 
influences the final classification accuracy. In addition, expert knowledge plays a 
vital role in these methods. Experts are required to identify meaningful features for 
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the desired classification, representing unique characteristics of wild animals and 
their habitats. These features are then utilized by some algorithms designed to calcu-
late the differences between animal objects and their surroundings through statistical 
analysis. In the early stages, threshold setting is a simple and widely used approach 
to differentiate animals from images. The idea behind this method is to apply a 
threshold value to a specific image feature, such as color, intensity, or texture, and 
then consider the regions where the pixels surpass the threshold [4, 36]. For exam-
ple, in [13], a pixel-based classification method was proposed to classify pixels 
based on their spectral characteristics and compare them to predefined threshold to 
find the regions including animals. The spectral thresholds based on light and dark 
pixels were used in [4] to identify white birds from RGB images that had dark back-
grounds. Similarly, based on the values of pixels in infrared imagery, [8] utilized the 
threshold of temperature to distinguish hot rabbits from a cold background. Moreo-
ver, blue/green thresholds have proven useful in classification between marine mam-
mals and water. This approach has been applied in multiple studies to effectively 
differentiate marine mammals from their aquatic environment, including [24, 29], 
and [28]. Pixel-based methods are easy and can be quite effective when the target 
animals in images have distinct features. However, in complex environments, wild 
animals are often camouflaged or their features blend into the background, making 
it difficult for pixel-based methods to detect them. Therefore, more advanced pixel-
based methods based on machine learning were proposed [6]. For instance, Oriented 
Gradients (HOG) and Haar-like features, along with classifiers like Support Vector 
Machines (SVMs) were used to detect animals from the images captured from com-
plex environments[25]. Torney et al. [32] introduced a method that combined rota-
tion-invariant object descriptors with machine learning algorithms to detect wilde-
beests from aerial images. Object-based Image Analysis (OBIA) approach involves 
DBSCAN cluster algorithm to group similar pixels into contiguous objects, which 
was used in [5] to count birds in large volumes of aerial imagery. In [27], a super-
vised pixel-based image classification model demonstrated high accuracy in count-
ing Lesser Black-backed Gulls and hippopotami in homogeneous environments with 
no obstructing vegetation. However, these approaches often exhibit a lot of limita-
tions in complex environments where animals blend with their surroundings.

2.2  Region‑Based Method

Region-based methods utilize deep learning techniques, especially Convolution 
Neural Networks (CNNs), to process and analyze image data at a more contextual 
level than pixel-based approaches. CNNs can directly extract hierarchical features 
from images, which are essential for recognizing and differentiating objects within 
diverse and cluttered backgrounds. Some advanced object detection models based 
on CNNs have been proposed, such as Faster R-CNN [26], SSD [19], RetinaNet 
[18], and YOLO [2]. These models have been used in the detection of wild animals 
from images. For example, a deep neural network using ResNet50 as feature extrac-
tor was used to identify wild animals in the Snapshot Serengeti’s true-color images 
obtained via camera traps in Africa, achieving a detection accuracy of 93.8% in [21]. 
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A model combining FPN and ResNet50 was employed to detect elephants, giraffes, 
and zebras from high-resolution  terrestrial images in Kenya’s Tsavo National Park 
with the detection accuracies of 95% for elephants, 91% for giraffes, and 90% for 
zebras  in [10]. A pre-trained Faster RCNN based on InceptionResNetV2 detected 
European mammals in camera trap images with a 94% accuracy  in [3]. [23] used 
Faster R-CNN to identify kiang in high-resolution drone images, achieving an over-
all precision of about 90%. In [7], YOLOv5 was employed to detect Red deer from 
images captured by  mobile cameras, achieving a detection accuracy of 0.86. [33] 
utilized ResNet50 as backbone to construct Faster R-CNN to detect deer and boars 
from the images captured by camera trapping, obtaining a detection accuracy of 
0.88.

2.3  Summary

At present, the majority of research is concentrated on detecting wild animals in 
true-color (RGB) images captured by using high-resolution cameras, and some 
models demonstrated excellent performance in the detection of wild animals. How-
ever, the research area of detecting small objects in thermal imagery is still relatively 
underexplored. For example, compared with the animal objects in high-resolution 
true-color images shown in Fig. 3, the size of wild animal objects in thermal images 
captured by UAVs is much smaller as shown in Fig. 2b, which means it may not pro-
vide enough feature information for the object detection models using deep learning 
to localize their positions and identify their species. In addition, when UAVs are 
used to monitor wild animals in the areas covered by tall vegetation, they have to 
fly at different altitudes to dodge the tips of tall trees. As a result, animal objects 
in thermal images may appear at different distances from the cameras, leading to 
significant variations in object size within a thermal image dataset. For instance, 
the animal objects in the UAV thermal imagery used in this paper range in size 
from 10 × 10 pixels to 80 × 80 pixels, with the largest object being nearly 64 times 
the size of the smallest. It is difficult for the ready-to-use object detection models 
designed for true-color imagery to recognize them. Therefore, as the use of UAVs 
for monitoring wild animals becomes increasingly popular, it is crucial to conduct 
more research into methods for automating the detection of small animal objects in 
the thermal images with limited resolution.

3  Methodology

3.1  Overview

In this paper, we apply the Faster R-CNN architecture to detect and classify wild ani-
mals in thermal images taken by UAVs. Faster R-CNN, originally  proposed by [26], 
is not merely an object detection model but a comprehensive two-stage framework 
for detecting objects. This framework includes several key modules: Feature Extrac-
tion, Region Proposal Network (RPN), Anchor Boxes, Bounding Box Regression, 



 Sensing and Imaging           (2024) 25:50    50  Page 8 of 28

and Region of Interest (RoI) Classification. To some extent, the process of object 
detection using deep learning emulates the process the humans use their eyes to find 
objects and then use their brains to identify the types of the objects.

Initially, the Feature Extraction module processes an image using a grid to create 
a feature map,  as shown in Fig. 4. Each unit of this grid correlates to a specific area 
of the input image, even though after transformations and downsampling  being per-
formed on them by the convolutional neural networks (CNNs). Using this feature 
map, the RPN predicts potential object locations, where anchor boxes are placed. 
These boxes, functioning as the model’s eyes and essential for the model’s iden-
tification capability, are then refined through Bounding Box Regression to make 
them fit the objects optimally. Finally, the identified RoIs are passed into the RoIs 
Classification module to determine the species of the detected animals. As shown 
by the process of the object detection model in Fig. 4, feature maps play a funda-
mental role on how a model can perceive, process, and interpret an image. Feature 
maps can be produced at different stages of CNNs through convolutional operations 
through the filters or kernels applied across the input image or the output from pre-
vious layers. Each filter is designed to detect specific types of features at different 
levels of abstraction, such as edges, textures, colors, or more complex shapes or pat-
terns, which are important for object classification. In addition, feature maps also 
maintain the spatial hierarchy of the input image, which is essential for the detection 
of the location of objects within an image.

Compared with high-resolution true-color images, thermal images have lower 
resolution and  inherently lack details, which makes it difficult for CNNs in Faster 
R-CNN to extract meaningful features to detect small objects within them. To 
address this limitation, we have implemented a series of modifications to the stand-
ard architecture of Faster R-CNN, enabling it to effectively detect small objects in 
UAV thermal images. The detailed structure of the detection model based on Faster 
R-CNN proposed in this paper is shown in Fig. 5. Subsequent subsections will fur-
ther elaborate on these modifications.

3.2  Feature Map Extractor Based on FPN and ResNet152

Classical feature extraction networks used in object detection typically include: 
LeNet [17], which was the first convolutional neural networks applied to solve prac-
tical problems; AlexNet [15] which   introduced dropout to prevent overfitting and 
proposed the ReLU activation function; VGG network [30], which utilized modu-
larization in its design and replace the larger convolutional filters with multiple 3 × 3 
filters; ResNet [12], which introduced a residual network structure to solve the issue 
of gradient explosion and disappearance as the number of CNN layers increases, 
allowing for very deep network layers; GoogleNet [31], which introduced the incep-
tion module and adopted multiple branches and convolution kernels; and ResNeXt 
[35], which integrated the concepts of Inception and ResNet.

GoogleNet and ResNext are usually used for object detection in high-resolution 
images, significantly reducing the number of parameters by executing convolu-
tional operations across multiple branches, thereby enhancing model efficiency. 
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However, these architectures may not be as effective for low-resolution images due 
to the inherently limited feature information available. Branching operations in such 
contexts can further dilute the feature details on each branch, leading to suboptimal 
detection outcomes. Conversely, VGG and ResNet are preferred for object detection 
in low-resolution images. VGG16 was used in the original Faster R-CNN in [26] 
to extract feature information from input images, but with its sequential architec-
ture shown in Fig. 6a, may cause  the gradients to diminish as they backpropagate 
through each deeper layer, making it difficult to detect small objects from low-reso-
lution images. In this study, the resolution of a thermal image is 512 × 640 , and the 
average size of objects in it is about 25 × 25 pixels. With the downsampling process 
of four CNN layers in VGG, the spatial dimension of the object in the feature map is 

Fig. 4  The framework of Two-stage Object Detection
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condensed to be less than 2 × 2 pixels. With the CNN layers going deeper, the fea-
ture of small objects disappears, and only background-related information remains 
in the feature map, leading to smaller and smaller gradient values. On the contrary, 
ResNet is made up of residual blocks that include shortcut connections as shown 
in Fig. 6b. These connections allow gradients to flow directly through the network 
during training, mitigating the vanishing gradient problem. Therefore, ResNets can 
be trained with much deeper layers than VGG networks. According to the number 
of CNN layers, the family of ResNets consists of ResNet18, ResNet34, ResNet50, 
ResNet101, and ResNet152. In general, reception fields of a feature map are crucial 
for the classification of small objects. In deep CNNs, layers are stacked, and each 
layer’s receptive field builds on the previous layers, thus, deeper layers in a CNN 
tend to have larger receptive fields. Given the small size of wild animal objects in 
our thermal images and the importance of receptive fields in identifying their spei-
ces, the ResNet152 architecture is chosen as the foundation for the feature extractor 
eventually.

As shown in Fig.  7, with the CNN layers deepening, the receptive field size 
increases due to accumulated effects of multiple convolution layers. However, the 
spatial dimensions of the feature maps typically decrease. This reduction has nega-
tive effects on localizing the positions of small objects but has positive effects on 
the identification of speicies. At the same time, the Field of View of a feature map 
is calculated by the resolution of an original image divided by its feature map’s 

Fig. 5  The Structure of Modified Faster R-CNN in this paper



Sensing and Imaging           (2024) 25:50  Page 11 of 28    50 

Fig. 6  a Sequential Connection; b Shortcut Connection

Fig. 7  The structure of ResNet152 Feature Extractor; The red numbers represent the resolution of a fea-
ture map. For example, the output of Layer Group 1 is 256 × 128 × 160 , which means its resolution is 
128 × 160 and the number of channels is 256
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resolution. Therefore, early layers with small field of view might only see small, 
local parts of the input, while deeper layers with big field of view may encompass 
a broad view of the input. Different feature maps can contribute to the detection of 
objects with different size. For the task of small object detection, a popular method 
is to select the high-resolution feature map for the Faster R-CNN model. However, 
the animal objects in our study are not only small, but also vary significantly in 
scales and aspect ratios. Only using one feature map cannot work well and thus the 
five feature maps shown in Fig. 7 are all chosen for the Faster R-CNN to perform 
the detection task. In addition, FPN is used to fuse the information from the five fea-
ture maps, to allow the early feature maps to complement the deeper feature maps. 
Therefore, the integration of FPN and ResNet152 is used in this paper as shown 
in Fig. 8. Specifically, the feature maps with different scales are generated by the 
different layers in ResNet152. Then FPN is used to combine low-resolution, seman-
tically strong features with high-resolution, semantically weak features via a top-
down pathway and lateral connections across the feature maps.

The five feature maps generated by ResNet152 shown in Fig.  7 are denoted as 
{

C
1
,C

2
,C

3
,C

4
,C

5

}

 . In the FPN built on top of  ResNet152 (Fig.  8), the features 
from the five feature maps are merged along top-down pathway. Specifically, the 
feature map Ci(i = 1,2, 3,4) undergoes an upsampling process, increasing its resolu-
tion by a factor of 2. The upsampled output is then combined with the corresponding 
bottom-up feature map Cj(j = 2,3, 4,5) using element-wise addition. This merging 
operation allows for the integration of high-dimension features from the upsampled 
feature map Ci with the features from the feature map Cj . Additionally, to mitigate 
the potential aliasing artifacts resulting from the merging operations, we applied a 

Fig. 8  The structure of FPN based on ResNet152
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convolutional operation with the kernel size of 3 × 3 to the feature maps merged by 
Ci and Cj , which outputs the final feature maps used by Faster R-CNN model. For 
instance, according to Fig. 7, the feature map C

5
 , which is the output of Layer 4, is 

upsampled to be twice of its original size, as indicated by D
5
 . Then, a 1 × 1 convo-

lutional layer is applied to the output of Layer 3 to change its channel dimensions, 
and the output, denoted by E

4
 , has the same number of channels as C

5
 . Through 

element-wise addition, M
4
 is generated, satisfying the equation M

4
= D

5
+ E

4
 . Sub-

sequently, a 3 × 3 convolutional operation is applied to create the feature map P
4
 . M

4
 

is then upsampled by a factor of 2 to become D
4
 . The output of Layer 2 is processed 

through a 1 × 1 convolutional layer to produce E
3
 . By element-wise addition, M

3
 is 

generated, satisfying the equation M
3
= D

4
+ E

3
 . Similarly, M

2
 and M

1
 are created, 

respectively fulfilling the equations M
2
= D

3
+ E

2
 and M

1
= D

2
+ E

1
 . Subsequently, 

3 × 3 convolutional operations are applied to M
1
,M

2
,M

3
 , and M

4
 to generate four fea-

ture maps, denoted as P
1
,P

2
,P

3
 , and P

4
 . Finally, P

5
 is produced by downsamplingP

4
 . 

The five feature maps, represented as 
{

P
1
,P

2
,P

3
,P

4
,P

5

}

 , are then inputted into 
Faster R-CNN for the detection of objects.

3.3  Customized Anchor Boxes for Small Object Detection

The concept of anchor boxes, introduced by [26], involves using a set of predefined 
bounding boxes of various scales and aspect ratios distributed methodically across a 
feature map. Each anchor is positioned strategically throughout the feature map and 
then mapped back onto the original image to help align these anchor boxes with the 
actual ground-truth bounding boxes that encompass the targets. This setup enables 
an object detection model to adaptively identify objects of different sizes and shapes 
by using anchor boxes as reference templates that provide vital spatial context to 
enhance the detection process. At the same time, Intersection over Union (IoU) is a 
measure used to measure the overlap between two bounding boxes. It is defined as 
the area of overlap between the predicted bounding box and the ground-truth bound-
ing box divided by the area of union of these two boxes:

In the original Faster R-CNN model, hand-picked anchor boxes were used and 
each anchor on the feature map is generated in one of nine configurations, com-
bining three scales 

(

128
2
, 256

2
, 512

2
)

 and three aspect ratios (0.5,1, 2) . This rigid 
configuration may not align well with the actual sizes and shapes of small animal 
objects in thermal images, particularly when these objects vary widely due to dis-
tance, angle, or environmental factors. During the training of Faster R-CNN, IoU 
is used to determine which anchor boxes best correspond to a ground-truth object. 
Anchor boxes with an IoU exceeding a certain threshold (commonly set at 0.7) with 
a ground-truth box are considered positive examples (true positives), while those 
with an IoU below a lower threshold (often around 0.3) are treated as negatives 
(true negatives). As illustrated in Fig. 9, the Intersection over Union (IoU) values 
between the green anchor boxes and the red ground-truth box are all below 0.7. This 

IoU =

Area of Overlap

Area of Union
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indicates that none of the green anchor boxes sufficiently match the ground-truth 
object, resulting in the failure to detect this animal.

To address this problem, Clustering of Bounding Boxes is used in this paper 
instead of hand-picked anchor boxes. This method was first used in YOLOv2 
and achieved good performance. The main idea is to employ K-means clustering 
on the training set bounding boxes to determine the dimensions of the anchor 
boxes. This clustering approach aims to automatically find the most representa-
tive anchor box shapes and sizes based on the actual data distribution, which 
helps in improving the model’s accuracy and efficiency. K-means clustering 
iteratively updates the centroids of clusters by minimizing the total within clus-
ter variance based on the chosen distance metric. The convergence of this pro-
cess depends heavily on the distance that defines how close the anchor boxs are 
from each other. Traditionally, the distance between two anchor boxes based on 
their width and height is calculated to measure their similarity. When applied 

to anchor boxes, the formula is defined as 
√

(

�
2
− �

1

)2
+

(

h
2
− h

1

)2 , where � 
and h represents the width and height of the anchor boxes respectively. This 
distance quantifies the absolute geometric difference between the size of two 
anchor boxes. It is simple and fast to compute but does not consider the posi-
tion or overlap between boxes. Therefore, IoU is used to measure the similarity 
between two anchor boxes, and the distance between two boxes in our study is 
then defined as 1 − IoU . Unlike the traditional distance, which purely considers 

Fig. 9  An example of using anchors to detect deer. The red rectangle is a ground-truth bounding box, 
and the green rectangles are the anchors generated by three scales 
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 and three aspect 
ratios (0.5,1, 2)
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the dimensions (width and height), IoU accounts for how well two anchor boxes 
overlap. The distance based on IoU thus reflects not just the size but also how 
similar the positioning of the two boxes is. This is more suitable for detecting 
small objects, as the primary concern is whether any part of the anchor captures 
the object, rather than the exact fit of the dimensions.

  We utilized the K-means algorithm based on the IoU distance metric to 
divide these bounding boxes into nine clusters. The average width and height of 
these clusters are shown in Table 1, which can be used to generate 9 customized 
anchor boxes. Figure 10 shows an example of using customized anchor boxes to 
detect a deer object. The red rectangle is a ground-truth bounding box, and the 
green rectangles are the anchors generated based on the 9 average cluster width 
and height listed in Table 1. Among the nine green anchor boxes, at least one has 
an IoU value greater than 0.7 with the red ground-truth bounding box, ensuring 
higher detection precision for deer objects in thermal images.

Table 1  Average width and 
height of nine bounding box 
clusters labeled in the thermal 
image dataset

Cluster 1 2 3 4 5 6 7 8 9

Width 12 11 17 15 24 19 19 28 34
Height 11 15 14 19 13 19 26 23 44

Fig. 10  An Example of Using Customized Anchors to Detect Deer



 Sensing and Imaging           (2024) 25:50    50  Page 16 of 28

3.4  Fusion of Multi‑scale RoI Align for Species Identification

In our paper, a FPN based ResNet152 is used to process the input image through 
multiple convolutional layers. This creates several feature maps, each representing 
the input image at different scales and levels of abstraction. These feature maps con-
tain comprehensive spatial and semantic feature information about the input image. 
Despite transformations, each point in a feature map corresponds to a specific region 
in the input image, known as its receptive field. As the network goes deeper, the 
receptive field associated with each point in the feature map covers a larger area of 
the input image.

As shown in Fig. 5, Regions of Interest (RoIs) are initially identified in the input 
image through the Region Proposal Network (RPN). These RoIs can be mapped 
back to corresponding locations on the feature maps. Thus, specific sub-sections of 
the feature map that correspond to the RoIs can be clipped or cropped, ensuring 
that only relevant features are obtained for species identification of animal objects 
within the RoIs. In the original Faster R-CNN and its modified versions proposed 
in other studies, only one sub-section of the feature map is chosen based on the size 
of the RoI. Typically, a larger RoI is assigned to a smaller-scale feature map, while 
a smaller RoI is assigned to a larger-scale feature map. However, this approach may 
not provide sufficient feature information to identify species of small objects in low-
resolution thermal images.

To address this issue, we propose a method called fusion of multi-scale RoI align. 
As depicted in Fig. 11, an RoI in a thermal image is mapped to four feature maps 
with different scales. Four sub-sections from these feature maps are then obtained. 
Using the RoI Align layer, these irregularly sized RoI feature map clips are trans-
formed to a fixed size. Finally, the four fixed-sized RoI feature map clips are fused 
into one feature map clip, which is used for subsequent species identification. This 
fusion method allows the output RoI feature map clip to learn feature information 
from multiple feature map clips, enhancing the precision of species identification of 
wild animals in thermal images.

Fig. 11  Flow of Fusion of Multi-scale RoI Align
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4  Experiment

4.1  Data Allocation

A total of 22,478 thermal images were captured in Chitwan National Park, Nepal, 
with all images standardized to a ‘White-Hot’ palette. To create the training data-
set, two scientists from the Center for Complex Human–Environment Systems at 
San Diego State University, along with two students from the University of Texas 
at Dallas, participated in the labeling task. Initially, the scientists independently 
filtered the images to retain only those with deer. Following this, the students 
used ’ImageLab,’ a free online image annotation tool, to label the deer objects in 
the images identified by the scientists. Any other animals present were annotated 
as "Other." The scientists then meticulously reviewed all annotations to validate 
them either as ground truth or to discard them. This thorough verification process 
significantly reduced subjective biases and ensured the annotations’ accuracy and 
reliability. As a result, a dataset consisting of 5,651 thermal images with 27,403 
wild animal instance annotations was constructed.

The number of wild animal instances in each thermal image ranges from 1 
to 84. As shown in Fig. 12, there are 62 wild animals in the image, labeled by 
red boxes. If the dataset is randomly divided into training, validation, and test-
ing subsets, the distribution of wild animal numbers within each subset may dif-
fer. This discrepancy can impact the final validation and estimation of the model. 
To address this issue, the dataset is initially divided into separate subsets based 
on the number of wild animals in each image. Within each subset, the images 
are further partitioned into three sections using a ratio of 70%:15%:15% (14:3:3). 
The detailed distribution is shown in Table  2. Subsequently, the images from 
these sections are combined to form three distinct datasets, which are allocated 
for training, validation, and testing, respectively. By employing this approach, we 
ensure that each dataset maintains a representative distribution of wild animal 
instances, enhancing the accuracy and reliability of the model trained by them.

Fig. 12  An example of wild animal annotation. There are 62 wild animals in the left image. The 62 deer 
are annotated by red boxes
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4.2  Detection Model Evaluation

To ensure a comprehensive assessment of the model’s performance, this paper uti-
lized the COCO detection evaluation matrix [22]. All objects were classified into 
three categories based on their areas: large, medium, and small. The detailed dis-
tribution of bounding box areas within our dataset is illustrated in Fig.  13. Small 
objects have bounding boxes with areas ranging from 0 to 200 square pixels, 
medium objects range from 200 to 400 square pixels, and large objects have areas 
exceeding 400 square pixels. Figure  14 shows three different thermal images to 
illustrate the shapes of small, medium, and large deer objects.

Totally, all animal objects detected from thermal images are classified into two 
classes: Deer and Other Animal. Average Precision (AP) and Average Recall (AR) 
are computed across the two categories using IoU thresholds that range from 0.5 
to 0.95 with a step size of 0.05. This range accounts for varying levels of overlap 
between the predicted and ground truth bounding boxes. AP measures the model’s 
accuracy in making positive predictions, with a focus on minimizing false posi-
tives. It assesses how well the model’s positive predictions align with the ground 
truth. Conversely, AR measures the model’s ability to correctly identify all posi-
tive instances, emphasizing the reduction of false negatives. It evaluates how com-
prehensively the model captures all relevant objects. Together, AP and AR provide 
insights into the trade-offs between precision and recall, offering a method to assess 
the overall effectiveness of the model.

Table 2  Distribution of datasets 
for training, validation, and 
testing

Deer Other Sum

Train (70%) 9359 9652 19,011
Test (15%) 1986 2150 4136
Validation (15%) 2164 2092 4256

Fig. 13  Distribution of Bounding Box Areas in Our Dataset
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4.3  Model Validation

For the tasks of object detection, the family of residual neural networks (ResNets) 
includes ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 are very pop-
ular as backbones to extract feature information from images because of their struc-
ture of Shortcut Connection shown in Fig.  6b. In [20], ResNet152 was proved to 
be very suitable for the detection of small objects from thermal images. Therefore, 
in this study, three main tactics are adopted to modify the original Faster R-CNN 
model. Firstly, VGG16 is replaced by FPN + ResNet152. The original object detec-
tion model using only a singular feature map is updated by a new model that can 
utilize multi-scale feature maps to detect small deer objects in thermal images. Sec-
ondly, customized anchor boxes defined in Table  1 is used to replace large-scale 
anchor boxes 

(
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2
, 256

2
, 512

2
)

 , which makes the model more effective in small 
object detection. Thirdly, the resolution of the RoI pooling layer output is changed 
from 7 × 7 to 8 × 10, keeping the same aspect ratio as the input thermal images with 
a resolution of 512 × 640. In addition, the feature information of RoIs, obtained by 
fusing the outputs from multiple RoI Pooling layers with different scales, is used for 
species identification in place of only using one output of a RoI Pooling layer.

Based on the structure of Faster R-CNN, four models, denoted as M1, M2, M3, 
and M4, were constructed with different strategies of backbone networks, anchor 
boxes, and RoI Pooling. In addition, we also set up a model based on the lat-
est YOLOv8, as M5. The backbone of M5 employs the structure of Spatial Pyramid 
Pooling—Fast (SPPF) layer [14]. Table 3 provides details and specifications for the 
five models. Table 4 shows the validation results of the five models based on the 
COCO evaluation matrix. Based on the scores of Average Precision with a threshold 
of IoU ≥ 0.5, the Faster R-CNN model detection performance, ranked from highest 
to lowest, is as follows: M1, M4, M3, and M2. The detection performance of M1, 
M3, and M4 is obviously better than M2. As shown in Fig.  15, a thermal image 
contains four two large deer objects, one medium deer object, and one small deer 
object. Based on this image, we test the converge speed of the four models. When 
trained for 100 epochs, Fig. 16 illustrates the detection results of the four models. 
According to Fig. 16, M2 failed to detect all objects, M3 successfully detected all 
large objects but struggled to detect medium and small objects, while both M1 and 
M4 exhibited the ability to detect all objects. However, it’s worth noting that M4’s 

Fig. 14  a An example of small objects; b an example of medium objects; c an example of large objects
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detections included two false-positive results. Under the condition of same training 
epochs, models M1, M3 and M4 demonstrate a faster convergence speed compared 
to M2. These outcomes serve as evidence that the structure of ResNet152 + FPN has 
more advantages in the extraction of feature information from original images than 
VGG16.  ResNet152 + FPN contributed positively to the convergence efficiency of 
an object detection model and improve the performance in the detection of small 
animal objects in low-resolution thermal images.

Table 3  The main structures and key characteristics of the four models in the subsequent experiments

Name Backbone RoI pooling Basic anchors

M1 RestNet152 + FPN 8 × 10; Multi-scale RoIs fusion Customized anchor boxes
M2 VGG16 7 X 7; Single RoI Large anchor boxes
M3 RestNet152 + FPN 8 × 10; Multi-scale RoIs fusion Large anchor boxes
M4 RestNet152 + FPN 8 × 10; Single RoI Customized anchor boxes
M5 SPPF N/A N/A

Table 4  The COCO detection evaluation matrix of the models in Table 4

Name IoU Size M1 M2 M3 M4 M5

Average precision IoU ≥ 0.5 All 92.3% 71.4% 77.4% 87.5% 90.4%
Small 78.9% 47.2% 54.9% 64.7% 74.3%
Medium 94.6% 73.9% 83.5% 90.4% 92.6%
Large 95.8% 87.0% 86.2% 89.4% 95.5%

0.5 ≤ IoU ≤ 0.95 All 63.1% 31.2% 36.6% 40.2% 60.4%
Small 50.6% 15.6% 22.6% 27.5% 48.3%
Medium 56.7% 29.3% 36.8% 40.2% 55.7%
Large 67.9% 44.7% 47.4% 47.5% 66.2%

Average recall IoU ≥ 0.5 ALL 91.4% 69.1% 77.6% 86.7% 89.2%

Fig. 15  There are four deer 
objects in a thermal image. 
according to the standard in 
Table 3, Deer 1 and Deer 2 are 
large objects, Deer 3 is medium, 
and Deer 4 is small
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M1 and M3 have the same structures, except the strategy of anchors genera-
tion. As shown in Fig. 17, the thermal image contains six deer, and the model M1 
successfully detected all deer objects, but the model M3 missed two small objects 
labeled by yellow boxes, which proves that customized anchor boxes are more suit-
able for small object detection than using hand-picked anchor boxes.

M1 and M4 have the same structures, except the strategy of RoI Pooling. M1 
adopts the method of Fusion of Multi-scale RoI Align to construct the feature map 
of RoIs for species identification, while M4 only uses the output of a RoI Align 
layer. As shown in Fig. 18, there are 73 deer in the thermal image. 72 deer objects 
were detected by M1 and M4. In the specific region marked by red arrow as shown 
in Fig.  18, there are three deer, but only two were detected. However, among the 
72 objects, 5 objects were wrongly classified as “Other” by the model M1, and 10 
objects were wrongly classified as “Other” by the model M4, which means that the 
method of Fusion of Multi-scale RoI Align proposed in this paper can improve the 
Average Precision of species identification of animals in thermal images.

Finally, we compared the model M1 with the model M5, which is constructed 
based on YOLOv8. As shown in Fig. 19, the thermal image contains 73 deer objects. 
M1 found 72 deer objects and M5 detected 73 deer objects. More details are shown 
in Fig. 19c and Fig. 19d, which reveals that M1 missed one, and M5 also missed 
one, but also detected a false-positive one. From the perspective of species identifi-
cation, 5 objects were wrongly classified as “Other” by the model M1, and 8 objects 

Fig. 16  The detection results from the four models are respectively shown in (a), (b), (c), and (d)

Fig. 17  a The detection results from the model M1 are colored by yellow. b the detection results from the 
model M3 are colored by orange 
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were wrongly classified as “Other” by the model M5. According to the experimen-
tal results, M1 and M5 have similar performance of object detection. However, M1 
is slight better in species identification for small objects in low-resolution thermal 
images.

In addition, wild animals typically exhibit a strong sense of territoriality, so 
the animals in the UAV thermal images are all of the same species. To verify that 
model M1 can detect and identify wild deer among other animals, we mosaiced 
multiple thermal images from the validation dataset into a single image, as shown 
in Fig.  20a. This image contains 12 deer objects labeled with red boxes and 11 
other animal objects labeled with yellow boxes. The predicted results by model 
M1 are displayed in Fig. 20b. Notably, the model not only detected the 12 anno-
tated deer objects but also identified an additional 9 unlabeled deer objects. These 
experimental results demonstrate that the model M1 constructed in this study can 
accurately discriminate deer from other animals in UAV thermal images, exhibiting 
good generalizability.

Fig. 18  a Species Identification Results of M1. b Species Identification Results of M2. c The Details 
of Region Maked by Red Arrow in (a) and (b). The objects labeled by green boxes were identified as 
“Deer”, and the objects labeled by yellow boxes were identified as “Other”
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5  Discussion

5.1  Contributions

This research presents a wildlife animal detection model based on Faster R-CNN, 
specifically designed to effectively detect wild deer from thermal images captured 
by UAVs, thereby enhancing the efficiency of data collection and analysis during 
wild deer surveys. The model addresses the challenges associated with detect-
ing small objects in low-resolution UAV thermal images through several tac-
tics. ResNet152 and FPN serve as the backbone, and multiple feature maps are 
constructed for the Region Proposal Network (RPN). Each feature map enriches 
the pool of spatial and semantic features available for object localization. The 
use of customized anchor boxes significantly improves the model’s capability to 
generate robust Regions of Interest (RoIs), tailored for detecting small objects 
in thermal imagery. Furthermore, the implementation of a fusion of multi-scale 
RoI Align strategy enhances the extraction of relevant feature information for 
RoIs, thereby improving the accuracy of wild animal species identification. This 
research is helpful for effective wild deer monitoring and conservation, providing 

Fig. 19  a The detection results of M1; b the detection results of M5; c the details of the region marked 
by red arrow in (a); d the details of the region marked by red arrow in (b)
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valuable insights into deer populations and their behavior in different environ-
mental conditions.

5.2  Future Work

The following three topics are worthy of further exploration.

• Enhancing the precision of species identification for small animal objects in 
low-resolution thermal images: The target animals in thermal images captured 

Fig. 20  a The mosaiced image containing deer and other animals; b The results predicted by the model 
M1
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by UAVs are usually small, which often leads to inadequate feature extraction 
and subsequent misclassification, even though most are successfully detected. 
Therefore, designing and constructing advanced deep learning architectures 
for the feature extraction of small objects contiues to be a critical focus of my 
future research.

• Enhancing Feature Information in Thermal Images: Thermal images, in compar-
ison to normal RGB images, often have lower resolution, which is not conducive 
to the detection of small objects. To overcome this limitation, future work should 
explore methods to enhance the feature information in thermal images. Some 
professional palettes are designed to improve object features with varying tem-
peratures in thermal images. It is possible to fuse feature information from ther-
mal images with different palettes. Therefore, exploring the utilization of these 
advantages in future research is recommended.

• When conducting wild deer surveys using drones, the drones capture images at 
regular intervals while flying back and forth in straight lines across the study 
areas. To obtain an accurate count of the deer population, it is necessary to set 
these intervals to ensure a minimum of 15% end overlap and 15% side overlap. 
Consequently, it is possible for some deer to be captured multiple times. There 
exists deer object redundancy among the thermal images captured. In the future, 
we hope to find some methods to find these redundant deer objects in different 
thermal images to reduce the issue of redundancy.

6  Conclusion

When conducting wild deer surveys in Chitwan National Park, Nepal, the dense cov-
erage of tall trees and vegetation often obscures the presence of wild deer, mak-
ing it challenging to monitor them with high-resolution RGB cameras. The optimal 
approach is using UAVs equipped with thermal cameras to monitor wild animals. 
However, the resolution of thermal images is usually low, and the size of target ani-
mals in these images is very small. Current mainstream target detection algorithms 
cannot be directly applied to detect and identify wild deer in UAV thermal images.

After comparing one-stage YOLOv8  and two-stage Faster R-CNN  detec-
tion frameworks, we chose to construct an object detection model based on Faster 
R-CNN for detecting wild deer from UAV thermal images. Specifically, we used a 
Feature Pyramid Network (FPN) based on ResNet-152 as the backbone to extract 
feature information from thermal images and construct multi-scale feature maps 
for object localization. We then set suitable anchor frame sizes and aspect ratios for 
wild animal detection according to the results of K-means clustering over the col-
lected thermal image dataset. Furthermore, we implemented a fusion of multi-scale 
RoI Align strategy to enhance the extraction of relevant feature information for RoIs, 
thereby improving the accuracy of wild animal species identification. The following 
conclusions were drawn:

1. Compared with the wild animal detection models proposed by some researchers 
shown in Table 3, the model in this paper achieved better detection performance.
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2. The performance of the model proposed in this paper was evaluated using the 
COCO detection evaluation metric. Under the condition of IoU > 0.5, the results 
revealed mean Average Precision (mAP) of 92.3% for all objects, 78.9% for small 
objects, 94.6% for medium objects, and 95.8% for large objects.
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