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Abstract

Neighborhood impacts on decisions about out-migration, though less explored and
understood than individual- and household-level impacts, can be significant; the
integration of these impacts in decision-making analyses may reveal mechanisms
undetectable otherwise. However, detecting these impacts can be difficult, espe-
cially when prior theorization is lacking. In this paper, we compare three methods
of measuring and reducing neighborhood impacts: multilevel modeling, eigenvector
spatial filtering (ESF) based on Euclidean distance, and ESF based on topological
distance. The second ESF method, in particular, is developed to accommodate the
elevation profile of our study site at the Fanjingshan National Nature Reserve of
Guizhou Province, China. Our previous work identified a suite of socioeconomic
factors at individual and household levels that influence out-migration decisions, to
which we apply the aforementioned methods to identify and control for neighbor-
hood impacts. While the non-spatial and multilevel models generated nearly identi-
cal results, the results from the ESF models present several considerable differences.
The Moran’s I statistics for each non-binary variable show that spatial autocorrela-
tion is present in some variables. Among the spatially autocorrelated variables, there
are different degrees of change in significance levels when compared to those in the
non-spatial model. Although most changes detected are small, we identify an addi-
tional significant variable—in our case area farmed—that was not observed before
we apply the ESF. Changes in the significance levels of several other independent
variables are also more significant after we applied the topological distance defini-
tions. Methodologically, the new results suggest using the topological ESF approach
may allow other studies to take into account spatial autocorrelation, especially in
more rural areas where elevation differences are significant.

Keywords Neighborhood effects - Rural out-migration - Eigenvector spatial
filtering - Multilevel model - Fanjingshan National Nature Reserve - China

Extended author information available on the last page of the article

@ Springer


http://orcid.org/0000-0002-1582-5035
http://crossmark.crossref.org/dialog/?doi=10.1007/s40980-023-00117-5&domain=pdf

7 Page2of30 Y.Liuetal.

1 Introduction

Geography plays an important role in the establishment and growth of communi-
ties. People tend to interact more when they live in proximity, and these interac-
tions in turn determine the social norms they are likely to form and follow (Cole-
man, 1990; Bendor & Switstak, 2001; White & Johnson, 2016). The concept of
neighborhood or community, and its effects on attitudes and values, is fundamen-
tal to the fields of human ecology, sociology, and geography—indeed all areas
of social science. A “neighborhood” is defined as an area where the residents
are "interrelated and integrated with reference to its daily requirements"” (Hawley,
1950, p. 257). These intra-community relationships can generate correlated data
when individuals from multiple communities are studied. Thus, ignoring neigh-
borhood effects, or spatial autocorrelation in general, may lead to biased results
from models investigating the effects of individual and household variables on
behavior, including migration decisions (Bilsborrow, 2016; Bilsborrow et al.,
1984; Chen et al., 2009; Sullivan et al., 2017; Zhang et al., 2021; Zvoleff et al.,
2013).

Spatial processes in migration and their impacts on populations have long
been examined in spatial demography (Rogers, 1968, 1975; Wilson, 1974; How-
ell & Frese, 1983). Thus migration can have significant impacts on population
compositions in both origins and destinations, especially when persons migrate
from poorer to wealthier countries or from rural to urban areas, which is well-
known to be usually primarily for better economic opportunities (e.g., Raven-
stein, 1885; Sjastad, 1962; Lee, 1966;, Bilsborrow et al, 1984; Chandrasekhar &
Sharma, 2015; Vega & Brazil, 2015; Mazza et al., 2018; Raymer et al., 2020).
Interest in examining neighborhood effects inherent in migration decisions and
consequences has mostly evolved more recently (Findley, 2019; Massey et al.,
1990). Migrant flows have been found to be highly differentiated by citizenship
and nativity (e.g., Lichter & Johnson, 2009; Raymer et al., 2013). Social net-
works created by geographical proximity and shared experiences have also been
observed to be among the major factors affecting migration (and non-migration,
from the psychic costs of leaving family, friends, and one’s local community)
(Curran & Rivero-Fuentes, 2003; Lee et al., 1994; Lichter & Johnson, 2009; Mas-
sey, 1990; White & Johnson, 2016). The likelihood of migration, and the way it
is funded and facilitated correlate highly with the spatial patterns of migrant ori-
gins (Bell & Ward, 2000; Crowder & South, 2008). For our study area, the Fan-
jingshan National Nature Reserve (FNNR), out-migration from the rural reserve
area to distant cities is part of the major trend of rural-urban migration ongoing
in China since the “opening up” in the 1980s. In addition to socioeconomic fac-
tors, migration decisions are also impacted by spatial location and interactions
with neighbors.

In order to detect and reduce spatial autocorrelation from which neighborhood
effects arise, studies in geography and ecology have sometimes utilized vari-
ous forms of models, including multilevel models and eigenvector spatial filter-
ing (ESF: see Beisner et al., 2006; Rangel et al., 2010). While multilevel models
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require substantive information about the spatial units, ESF is less demanding
and uses a form of data mining, in which alternative spatial definitions can be
tested until the optimal one is found (Getis, 1992; Griffith, 2000).

In this paper, we compare the effectiveness of both multilevel and ESF methods
in reducing spatial autocorrelation in the out-migration model. Using two different
ways to measure neighborhoods (i.e., defined by Euclidean vs. topological distance)
in ESF, we evaluate the potential for using topologically based distance matrices in
an area with large elevation variations.

2 Background
2.1 Eigenvector Spatial Filtering (ESF)

Traditional regression analyses that do not account for neighborhood effects may be
compromised due to violating the essential assumption that regression residuals are
independent. And although individuals or elements in multilevel statistical models
can be organized hierarchically to deal with neighborhood effects (Goldstein, 2011),
such multilevel models require prior knowledge about the sizes of the classes or
clusters (e.g., schools for studies of students, hospitals for patients, political districts
for voters). However, in many if not most situations, the most relevant geographic
area or size for such classes or clusters is not known, if even identifiable; it varies
greatly with the prevalence and quality of transportation linkages and the specific
type of behavior or decision under consideration (Bilsborrow et al., 1984; Hawley,
1950).

In cases when we have little or no a priori knowledge of the appropriate neigh-
borhood, an effective way to examine neighborhood impacts is to apply spatial filter-
ing methods (Getis, 1992; Griffith, 2000). Other spatial models, including the simul-
taneous autoregressive (spatial error) model and the autoregressive response (spatial
lag) model, are restricted to OLS regression models (Chun et al., 2016). The ESF
method decomposes key variables in normal multiple regression models into spatial
and non-spatial components to thereby eliminate spatial autocorrelation. The non-
spatial components can then be analyzed in any standard regression model—this
offers considerable potential to detect mechanisms that might be overlooked in mod-
els that ignore the spatial component. It defines an n x n spatial weights matrix C (n
being the number of observations or data records), which is comprised of 1’s and
0’s, each representing a pair of objects being or not being considered spatial neigh-
bors. In our data mining approach, we assign households at varying distances from
the household under investigation as neighbors (i.e., these households are assigned
a 1 and all the rest a 0), to account for different yet unknown neighborhood sizes.
Transforming the C matrix, we get:

MCM = (I - 117 /n)cd - 117 /n) (1)

where [ is the n X n identify matrix, 1 indicates a nXx 1 matrix (column vector with
n rows of 1), and T represents the operation of transposing the matrix. It has been
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shown that all the eigenvectors of MCM, i.e., E;, E, ... E, (representing the eigen-
vectors associated with eigenvalues ranked in descending order as A; >, ...>A,,
where A, represents the eigenvalue for the n' eigenvector), are orthogonal. Through
some selection procedures (e.g., stepwise regression or choosing the top k eigenvec-
tors where k<n), a subset of eigenvectors can be chosen and used as regressors in
multivariate regression analysis. Adding these eigenvectors to regression models can
remove or at least reduce the contribution of spatial components and generate less
biased estimates of regression coefficients (Chun & Griffith, 2011; Griffith, 2000;
Tiefelsdorf & Griffith, 2007).

ESF has been widely used in ecology (Beisner et al., 2006; Rangel et al.,
2010) and social sciences for topics such as studies of land prices (Seya & Tsut-
sumi, 2013) and car ownership (Hankach et al., 2022). A few recent studies on
migration also utilize this approach, but they focus on network autocorrela-
tion, where the migration of someone from a given origin to a given destina-
tion is correlated with that of other persons from the same origin to the same
destination (Liu et al., 2017; Gu et al., 2020). Gu et al. (2020), for example,
examine the intentions of migrants to transfer their hukou from the origin to
the destination (that is, their legal household registration determining permanent
residency, conferring residency benefits such as free education and healthcare).
Their research found significant network autocorrelation in migration intentions,
whose impact on the regression model was filtered out by ESF. It has therefore
been argued that the inclusion of variables to control for network autocorrela-
tion can significantly improve models of the determinants of migration (Chun &
Griffin, 2011).

In the context of our study, we are interested in out-migration decisions from
FNNR and therefore have coupled the ESF method with the Cox model (see
details in Sect. 3.2) to examine neighborhood effects. Households close to each
other are more likely to make similar decisions and are also subjected to the
same local government policies and environmental conditions. We hypothesize
that neighborhood effects exist in the model at three different distance ranges
(short, medium, and long distances; see details in Sect. 3.2) based on our prior
knowledge of the site. We also hypothesize that models using topological dis-
tances can detect more neighborhood effects compared to the Euclidean-dis-
tance-based models because topological distances capture the traveled distance
better in the landscape of our study site. The data-mining approach of ESF
allows us to determine which neighborhood definitions have the most signifi-
cant impacts on the variables we are interested in. In addition, in social analy-
ses, ESF has been mostly applied in urban contexts where there is no meaning-
ful variation in elevation. In a prior study, neighborhoods were identified in the
same FNNR area with a similar approach but for a different model (Zhang et al.,
2021), in which only Euclidean distances were used. Here, we add a topological
distance matrix to the Euclidean distance matrix, which may shed light on how
ESF could be applied in areas with larges elevation variations, as in vast rural
parts of the world.
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2.2 Rural-to-Urban Migration in China

In the past 40 years, China has undergone profound socioeconomic changes follow-
ing the "reform and open-door policy" initiated in 1978. Modernization and urbani-
zation have expanded from coastal provinces to inland regions, as well as from
big cities to many remote rural areas. Meanwhile, over 200 million adult migrants
have left their rural homes and towns for metropolitan areas such as the Yangtze
and Pearl River Deltas, seeking better opportunities for personal development and
higher incomes to support their families (Zhao, 1999; Liang, 2016). Rural-urban
migration is important in most developing countries (it was so earlier in present-
day developed countries as well) as it is linked directly to the processes underlying
socioeconomic development. Rural families may migrate as units or may send off
a household member to earn a higher income and then benefit from receiving the
migrant’s remittances. In the latter case, and consistent with the theory of the New
Economics of Labor Migration (Stark, 1991; Stark & Bloom, 1985; Stark & Taylor,
1991), the migrant is expected to earn more in the destination area and share it with
the household of origin by sending (or bringing) back money or goods, increasing
and diversifying the income sources of the origin household.

This type of migration appears to have accelerated in China following the large,
national payments for ecosystem services (PES) programs, such as the Grain to
Green Program (GTGP) and the Natural Forest Conservation Program (NFCP) (Liu
et al., 2008; Zhang et al., 2018). The GTGP program has encouraged the transforma-
tion of farmland (or pasture) to secondary forests (or grassland), compensating land-
owners for withdrawing land from cultivation or pasturing. In addition, the Chinese
government had already loosened long-standing restrictions on migration from rural
to urban areas, such as the hukou system, which, as previously mentioned, was used
in part to deter migrants from becoming permanent residents in destination cities.
This institutional change released farm labor from cultivating farmland or pasturing
and allowed them to out-migrate, especially to metropolitan or coastal areas (Zhang
et al., 2018; Zhao, 1999).

The goal of most migrations is to seek a better life, but the paths and fruits of
the pursuits vary. In the remote villages of the Fanjingshan Nature National Reserve
(FNNR) of south-central China, over half of the households surveyed had at least
one outmigrant, but their socioeconomic circumstances differed considerably.
Some families still relied mainly on agriculture for their livelihoods, while others
had already diversified their sources of income, via participating in tourism or other
non-agricultural employment. Households in this study area also differed in ethnic-
ity (most being minorities), age composition, education level, and even access to
natural resources. Finally, they were participating in the two aforementioned pro-
grams (GTGP and NFCP) to varying degrees, receiving different amounts of sub-
sidies based on how much farmland and forest land, if any, they had enrolled in the
two programs (Yost et al., 2020).

This research examines the potential impacts of spatial neighborhood size on
out-migration from households in the FNNR. Building on the basic Cox statisti-
cal model of household migration developed before for the study area (of Yang,
2019), we examine differences in model results before and after incorporating
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neighborhood effects. In addition to adding to the literature on the spatial effects
in migration, our methodology can also inform other forms of processes sub-
jected to neighborhood effects.

3 Data and Methods
3.1 Study Site and Data Collection

Located in the Wuling mountain range in the Guizhou province, China, the
FNNR is a highly biodiverse area and home to many endangered species such as
the Guizhou snub-nosed monkey (Rhinopithecus brelichi), the Chinese giant sal-
amander (Andrias davidianus), and the forest musk deer (Moschus berezovskii).
The altitude in the reserve ranges from 700 to 2600 m, encompassing a variety
of ecosystems (Yang et al., 2002). At the time of the survey in 2014, there were
3256 households residing within or near the boundaries of the FNNR. In addi-
tion to resource collection in the forest and agricultural practices, remittances
from outmigrants are an important source of income. Following the rural-to-
urban migration trend discussed previously, an increasing number of residents
have chosen to migrate to cities with more job opportunities.

We conducted a household survey in 58 randomly selected natural villages
from all the 123 natural villages located in or near the boundary of FNNR
(Fig. 1). We interviewed the household head, if present at the time of the sur-
vey, or another knowledgeable adult, usually the spouse, if the head was not pre-
sent. We collected data on each household’s agricultural land area and land use,
sources of household income, and the household’s enrollment in and value of
subsidies received from the GTGP and NFCP programs in the previous 14 years
(2001-2014). For migration, we considered all persons aged 15-59 in the house-
hold as the persons of interest (number of laborers in Table 1), who could be
making migration decisions (whether or not to migrate) in the year of migration.
In every household, we also collected data on each adult’s age, gender, educa-
tion, marital status, etc., along with changes over time each year since 2000,
notably in education, marital status, residence (whether an outmigrant or return
migrant), main work activity (on the farm, off-farm, managing non-farm busi-
nesses, none). The main source of household income was also obtained for each
year.

In households with an outmigrant still living away at the time of the survey
(summer of 2014), the data above were collected for each year using an indi-
vidual event history table (if more than one adult migrant existed in the house-
hold, one was selected randomly). For all households with or without an out-
migrant, one (non-migrant) member aged 15-59 was also selected to obtain the
same event history since 2000. All such individuals selected were considered the
"population at risk of migration."

@ Springer



Measuring Neighborhood Impacts on Labor Out-Migration from... Page70f30 7

= A

Vo 4 Households
. e [ FNNR Core Zone
pom High : 3000 m
1:130,000 z Y Low : 400 m
T
01 2 4 Km A Projected Coordinate System:
Lot Ve WGS 1984 UTM Zonc 49N

Fig. 1 Fanjingshan National Nature Reserve, showing the locations of interviewed households in this
study

3.2 Cox Model

The dependent variable in the model is whether the selected individual was an out-
migrant from the household in any year during the reference period (2001-2014)—
an outmigrant being defined as a member (or former member) of the household who
lived outside the county for more than 6 months and was living away at the time of
the survey. Based on the migration literature and visits to the survey households,
we identify a suite of independent variables at both individual and household levels
to predict out-migration decisions (Table 1; drawing on Yang, 2019). We include
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individual-level variables, such as age, gender, years of school completed, mari-
tal status, main work activity, as well as household-level variables, i.e., household
size, main source of income, farmland area, participation in GTGP and NFCP, etc.
A household is defined as having a migration network if the household respondent
reported having a close relative (defined as a parent, child, or sibling) living outside
the local county in the year prior to migration, or for a household with no migrant in
the reference years, having such a relative living outside the county five years before
the survey. Note that most variables were measured with a time-sensitive perspec-
tive (i.e., are time-varying), so changes during the modeling period (2001-2014) are
incorporated in the survival analysis model, as will be explained later. Thus, some
young persons aged into the main "population at risk of migration" (15-59), while
others aged out during the reference period.

To include contextual variables in the model, we recorded the village ID of each
household, which links the household to its village cluster' (23 in total). We also
used GPS devices to record each household’s exact geographical location, which
was then used to calculate neighborhood metrics. Further details on the survey
design, implementation, variable selection, and the multilevel Cox model specifica-
tion are available in Yang (2019) and Yost et al. (2020). In this study, we identify
513 households (16% of total population)” in the study area where all the variables
needed for the model are available (Fig. 1).

Survival analysis, a proportional hazards statistical estimation model, is an appro-
priate technique for examining the occurrence and timing of events (Allison, 2010;
An & Brown, 2008; Klein & Moeschberger, 2003). In particular, Yang (2019) and
Yost et al. (2020) utilize a multilevel Cox hazard model to predict the determinants
of an individual’s out-migration. The dependent variable in survival analysis is the
“hazard,” expressed as the binary result of out-migration in a year, with 1 indicating
out-migration of that individual and 0 non-migration (Therneau, 2018):

Y1) = yo ()X 2)

where y, is the baseline hazard function, X and Z are the design matrices for the
fixed and random effects, respectively, and g and b are vectors of regression coef-
ficients. In our analysis, we start with this basic non-spatial model, and then incor-
porate dummy variables in the basic model, using the Village cluster ID to cap-
ture overall contextual effects on migration decisions. To better account for spatial
effects, we integrate into this basic model the ESF method (An et al., 2016; Chun &

! We re-grouped the 58 sampled natural villages into 23 village clusters based on their geographic loca-
tions to ensure that each village cluster had at least 20 interviewed households for the Cox analysis. The
village clusters consist of neighboring natural villages, not the official administrative villages.

2 Qut of the 3256 households living in the reserve, we conducted interviews with 605 scientifically ran-
domly selected households (18.6% of total households). After determining the variables needed for the
model, we were left with 513 sample households with complete data, which was still a fully statisti-
cally representative sample of the population. To check for possible bias in households excluded, we
produced cross-tabulations to compare characteristics of the 513 included households with those of the
92 excluded ones, finding no major differences.

@ Springer



7 Page 100f30 Y.Liuetal.

Griffith, 2011; Griffith, 2000). We calculate eigenvectors for each household at sev-
eral predefined neighborhood sizes.

To do this, we first define neighborhoods based on Euclidean distance; all house-
holds within a certain fixed distance are identified as "neighbors" of the household
of interest. We use the "spdep" package in R to generate the neighborhood matri-
ces, starting with 0.04 km—which is the minimum distance that allows more than
half of the data points to have at least one neighbor—and ending at 10 km, which
covers around a third of the spatial extent of the entire area. In addition to ensur-
ing each specification includes enough neighbors, these neighborhood definitions
are also selected based on previous studies and theorization. Thus, they have been
found to have significant impacts on another model at the same study site (Zhang,
2021). While the short-distance definitions (0.04 km to 0.1 km) capture interactions
between close neighbors who might see each other on a daily basis, neighbors based
on the moderate-distance definitions (0.1 km to 1 km) would not interact with each
other as frequently, but are likely to share key infrastructure (e.g., access to schools,
roads, and markets) and similar environmental conditions. Finally, the long-distance
definitions (1 km to 10 km) are included because such more remote neighbors may
belong to the same village, or other larger administrative unit, and be subjected to
similar local government policies.

We also calculate the topological distance (see definition below) between each
household with the "topoDistance" package in R and replace the Euclidean distance
matrix with the resulting topological distance matrix. For this method, we use the
same fixed-distance definitions from 0.04 to 10 km. The topological distances are
defined as distances that also take into account terrain differences. Taking an addi-
tional digital elevation model (DEM) raster layer, the tool overlays the household
locations on the DEM to find the elevation for each point. Then, it calculates the
topological distances by finding the shortest topographic path between points, thus
better representing real distances traveled. The differences between the Euclidean
distances and the topological distances range from 0.03 to 3.78 km, which are sig-
nificant in our neighborhood definitions.

To find the exact neighborhood size appropriate for our model under the ranges
mentioned above, we use a data mining approach: choosing the one distance (out
of the multiple ones tried) that matches certain thresholds of some indicators—to
uncover or approach the optimal size. We then calculate the top 5 eigenvectors based
on each distance specification (i.e., the ones with the highest eigenvalues: An et al.,
2016; Chun & Griffith, 2011; Sullivan et al., 2017), and attach them to the original
Cox model developed by Yang (2019) to re-estimate the regression. As the depend-
ent variable is binary, the calculation of the residuals d follows from the following
equations:

‘ J \/2IIn(p,), y; =1
L = b+ Y X, and d; = [In (py)- % 3)
1

1-p, aad —\/21n (1=p,). v, =0
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where p is the probability of migration calculated from the statistical model, y the
dependent variable, X the set of independent variables, and b the coefficients of the
independent variables.

We then calculate the Moran’s I statistic® and the related z scores of the regres-
sion residuals of both the spatial and non-spatial models in R using the spdep pack-
age. For the non-spatial model, we calculate the Moran’s I statistic with each neigh-
borhood definition used in the spatial models in order to compare the results with
those from the spatial models. For the spatial models, we calculate the statistics with
the same neighborhood definition (e.g., the Moran’s I results of the 5-km spatial
model are calculated with a 5-km neighborhood definition). Akaike information cri-
terion (AIC) scores* are also calculated for each model and used to select models
with better fit. Finally, we calculate the Moran’s I statistics for all non-binary vari-
ables to identify specific variables that could be more spatially autocorrelated than
others and thus causing more bias.

4 Results
4.1 The Basic Cox Model Results

The difference between the random-intercept and fixed-intercept multilevel models
is found to be insignificant in ANOVA analysis (p>0.05), so we report the results
only for the fixed-intercept models.

Individual’s age and the household having agriculture as its main source of
income are consistently significant and negatively linked to out-migration, while
gender (male), being married, number of working-age adults in the household,
and the household having migration networks are also significant positive predic-
tors (Table 2). Education and the area farmed are only weakly positively linked to
out-migration, while the other variables left in the model for theoretical reasons
(expected to be important) do not have statistically significant results when included
in the full multivariate model. Overall, the results for all the statistically significant
variables are consistent with theoretical expectations.

We then compare the results from the two non-spatial multilevel models, first
the basic one and then including village dummy variables to capture the overall
effects of village factors on individual out-migration. The significance levels of
the independent variables are nearly identical in the two models, and their coef-
ficients do not change much (Table 2). Five village clusters out of 23 have statisti-
cally significant effects, and three more marginal effects. In this case, however, no
significant changes are observed in the individual or household variables—only

3 An overall indicator for spatial autocorrelation based on how similar/dissimilar neighboring features
are. It ranges from — 1 to 1, — 1 being perfectly dispersed, 1 perfectly clustered, and O perfectly random
(Ord & Getis, 1995).

4 Calculated from the number of variables in the model and the sum of squared errors (SSE). Smaller
AIC scores indicate better fit (Burnham & Anderson, 2002).
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Table 2 Results of basic

. Variable Basic model With dummy variables

non-spatial model and dummy

variable model on factors Coef SE Coef SE

affecting determinants of out-

migration Age —0.027*** 0.005 —0.028***  0.005
Gender 0.318* 0.130 0.311* 0.138
Education 0.032~ 0.017 0.023 0.017
Marital status 0.605%** 0.178 0.578** 0.182
Off-Farm Work -0.182 0.141 -0.091 0.153
HH Size —-0.007 0.052 0.030 0.055
Num Labor 0.174* 0.080 0.166* 0.084
Area Farm 0.015~ 0.009 0.019~ 0.010
GTGP 0.165 0.106 0.170 0.119
NFCP 0.042 0.118 —-0.049 0.139
Income Ag —0.470%*%%  0.117 —0.443%%% 0.127
MigNetwork 0.394%** 0.117 0.445%* 0.121
Dummy 1 0.647 0.102
Dummy 2 0.561 ~ 0.086
Dummy 3 0.650~ 0.077
Dummy 4 0.134 0.698
Dummy 5 —0.059 0.891
Dummy 6 0.275 0.434
Dummy 7 0.083 0.819
Dummy 8 0.324 0.381
Dummy 9 0.019 0.958
Dummy 10 0.298 0.530
Dummy 11 0.316 0.383
Dummy 12 0.028 0.943
Dummy 13 0.466 0.202
Dummy 14 1.081%%* 0.005
Dummy 15 1.053%* 0.003
Dummy 16 0.454 0.245
Dummy 17 0.707 ~ 0.073
Dummy 18 0.745% 0.027
Dummy 19 0.207 0.576
Dummy 20 0.089 0.831
Dummy 21 0.912%* 0.014
Dummy 22 0.691* 0.037

N=513 HHs. *** p<0.001, ** 0.001 <p<0.01, * 0.01 <p<0.05,
~0.05<p<0.1

a very slight weakening of the effects of education and marriage at the individ-
ual level, of the household having agriculture as its main income source at the
household level, and tiny increases in the importance of household farm area and
migration networks.

@ Springer



Measuring Neighborhood Impacts on Labor Out-Migration from... Page 130f30 7

Table 3 Moran’I test and AIC results for the ESF models where decrease in residual spatial autocorrela-
tion is significant

Model Neighborhood definition Moran I statistic p value Z score AIC
Model 1 Euclidean distance: 3 km -0.016 0.944 —1.589 4278.312
Model 2 Euclidean distance: 4 km -0.014 0.94 —1.557 4277.54
Model 3 Euclidean distance: 7 km —0.01 0.947 —-1.616 4276.751
Model 4 Euclidean distance: 8 km —0.007 0.874 —1.144 4276.881
Model 5 Topological distance: 3 km —0.001 0.081 1.3962 4278.111
Model 6 Topological distance: 4 km —0.001 0.092 1.3306 4279.150
Model 7 Topological distance: 5 km 0.000 0.075 1.4393 4276.576
Model 8 Topological distance: 7 km 0.000 0.044 1.7053 4277451
Model 9 Topological distance: 8 km 0.001 0.037 1.7884 4276.427
Model 10 Topological distance: 9 km 0.000 0.097 1.3015 4276.155

When ESF is incorporated into the model, spatial autocorrelation in the regres-
sion residuals (see 3.2 for details) is significantly reduced (Table 3). While the sig-
nificance levels of most variables remain the same, several do change (Table 4).

Thus the household labor availability variable, significant (at the p=0.05 level)
in the non-spatial model, becomes insignificant in some of the ESF models (Models
1,2, 4,5, and 6). The p-values of the area farmed are also greatly reduced in ESF
models, switching from being insignificant (at the p=0.05 level) to significant in
several models (Models 1, 5, and 6) after filtering out neighborhood effects. Third,
the education variable has a decrease in significance level, its p-value changing from
0.055 in the non-spatial model to greater than 0.1 in most ESF models (Models 1,
2,3,5,7,8,9, and 10). All of the coefficient values are similar to those in the non-
spatial model.

4.2 Spatial Autocorrelation

For the Euclidean distance definitions, the Moran’s I results from the non-spatial
model show that in 5 out of 15 neighborhood definitions examined (3-km, 4-km,
6-km, 7-km, and 8-km), model residuals are significantly spatially autocorrelated
(IzI> 1.96; Table 5). We observe a decrease in the absolute values of the z score in 11
out of 15 of the definitions, the exceptions being under the 0.5-km, 1-km, 2-km, and
5-km neighborhoods, suggesting an overall reduction in the spatial autocorrelation
of residuals after applying the ESFs. The AIC score also decreases as we increase
the measure of distance, becoming smaller than that of the non-spatial model (4281)
at 2 km and then rising again at 9 km. This means that between the neighborhood
definitions of 2 km and 9 km in this study area, ESF is more effective in reducing
spatial autocorrelation and providing a better model fit. Among these models where
the spatial autocorrelation is reduced, we identify 4 models (3-km, 4-km, 7-km, and
8-km) where the reduction is significant (IzI decreases from more than 1.96 to less
than 1.96). The AIC scores of these models are also optimal among all the ESF
models.
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For the topological distance definitions, the model residuals of the ESF models
are significantly spatially autocorrelated (IzI>1.96) based on using 6 neighborhood
definitions (3-km, 4-km, 5-km, 7-km, 8-km, and 9-km). Similarly, there is an overall
reduction in lzl, except for two definitions (1-km and 2-km). The AIC scores follow
the same pattern as the Euclidean distance definitions, decreasing till 10-km. We
identify 6 models (3-km, 4-km, 5-km, 7-km, 8-km, and 9-km) where there is signifi-
cant reduction in |zl.

Finally, we conduct Moran’s I calculations on each non-binary independent vari-
able at each of the ten neighborhood definitions (Moran’s I calculation is not appro-
priate for binary variables). While age and education are not spatially autocorre-
lated under any neighborhood definitions, the other statistically significant variables
(number of working-age adults, area farmed, and household size) are highly spatially
autocorrelated (IzI>1.96). Again, by comparing the change in the p-values of their
coefficients, we can see the effect of incorporating ESF on specific spatially auto-
correlated variables. As discussed above, the number of laborers and area farmed
are two independent variables that undergo significant changes in p-value. Both
variables have larger z-scores from the Moran’s I statistics, suggesting that they are
spatially autocorrelated. The other spatially autocorrelated variable, household size,
however, do not experience a significant change after the application of ESF, but is
insignificant in any model anyway. Interestingly, one variable that is not spatially
autocorrelated, education, also changes its significance level in the spatial models
(Table 6).

5 Discussion
5.1 Effects of ESFs on Cox Model

While the multilevel Cox model with dummy variables does not capture significant
neighborhood effects, the Moran’s I results show that spatial autocorrelation is still
present in the model residuals under several neighborhood definitions (Table 5).
The application of ESF significantly reduces this spatial autocorrelation in model
residuals, resulting in changes in the significance levels of three variables (educa-
tion, number of laborers, and area of farmland). The Moran’s I tests on individual
variables also confirm spatial autocorrelation in some of the variables.

Education is weakly linked to migration in the non-spatial model (0.05 <p <0.1),
perhaps due to limited educational opportunities beyond primary in the rural study
area—migrants usually leave to seek low-skilled work. Adding eigenvectors into
the model consistently increases the p values in all neighborhood definitions. With
exception of model 4 and model 6, the p values cross from below 0.1 to over 0.1,
indicating that the impact of neighborhood is significant for the variable (Table 4).
The Moran’s I test on the education variable, however, does not indicate spatial
autocorrelation at any neighborhood definition (Table 5). The change in significance
level of education is therefore likely due to the change in significance of other vari-
ables that are somewhat correlated with level of education. This may also be due to
the size of the dataset, which might be too small to capture its neighborhood effect.
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At the household level, our results demonstrate that as the farm area variable
became more significant, the number of laborers in the households became less sig-
nificant, after the application of ESF. Their significance levels change likely due to the
high spatial autocorrelation in the data (Table 5); once the appropriate ESF is used to
filter out the negative impacts of spatial autocorrelation, its "hidden" impacts on migra-
tion are recovered: thus farm area has a more significant, positive impact on migration
decisions (coefficient p-values decreased in all ESF models, with the p-value at model
1, 5, and 6 less than 0.05), while the number of laborers only appears to have a mild
significance.

The positive relationship between farmland area and out-migration may seem con-
tradictory, since in other studies on developing countries, access to land, either culti-
vated or non-cultivated (forest in this case), tends to be a key factor that reduces out-
migration (e.g., Shaw, 1975; Bilsborrow et al., 1984, Chapters 2, 10; Massey et al.,
1993) as having more land provides more opportunities to engage in agricultural pro-
duction. But there are cases in which the ownership of more household assets, includ-
ing agricultural land, facilitates out-migration (Bilsborrow et al., 1987; Davis et al.,
2016). First, households with more farmland are likely to have more household income
from land. In the case of China, they have an additional advantage: they are more likely
to have land to enroll in the GTGP, which provides a modest cash compensation each
year and could help fund out-migration to an urban destination (Davis et al., 2016;
Yost et al., 2020). Apart from the household’s capacity for funding out-migration, a
person’s willingness to migrate also relates to the household’s food security in his/her
absence. Households with more farmland and thus more grain production are more
likely to have enough land and crops to meet their basic subsistence needs even after
GTGP enrollment of land and out-migration. This is because farmers may intensify
agricultural production on the remaining land, made possible by remittances from the
outmigrants which can be used to purchase better farming equipment (Xu et al., 2006);
in the FNNR, the labor-to-farmland ratio is indeed high. Finally, greater availability of
farmland is often associated with remote, poorer places, where farmers are more likely
to leave for higher-paying jobs (Zhang et al., 2018).

Interestingly, the number of laborers in the household becomes insignificant
when ESF is applied, which might also arise from spatial autocorrelation in the data
(Table 5). Given the one-child policy in China over the past four decades (terminated
in 2016), the numbers of children in rural households are very similar, rarely being
different from one or two, making the variable relatively stable (mean=2.13; max=6;
min=0; standard deviation=0.96; Table 1). Such low variation in the number of
laborers makes it difficult to detect any effects of the variable: while there is still the
expected positive relationship between number of laborers in the household prior to
migration and out-migration (even after the ESFs are applied), p values are consistently
lower than 0.1).

5.2 Euclidean and Topological Distance Definitions

Comparing the Moran’s I results of model residuals under the same distance from the
Euclidean and topological neighborhood definitions, we can see that the topological
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distance models have lower Izl values from 3 to 10 km (Table 5; e.g., at 3 km, model 1
(Euclidean) has a Izl of 1.589 while model 5 (topological) has a |zl of 1.396). The topo-
logical models also better reduce the level of spatial autocorrelation than the Euclidean
models—there are two additional distances (5-km and 9-km) where Izl values become
significantly lower in the ESF models using topological distances. In Table 4, we can
also see that the changes in p values in variables are slightly larger in the topological
models (e.g., for area of farmland at 4-km definition, the variable had a p-value of 0.50
in model 2 (Euclidean) and a p-value of 0.064 in model 6 (topological). This shows that
the topological models are better at detecting and eliminating neighborhood effects.
Although the topological models do not identify additional variables that underwent
significant changes after the ESF process, they do generally highlight the strength of
neighborhood effects in the dataset. Therefore, the topological models appear better
suited for our study area, where elevation differences are quite significant (elevation
ranges from 484 to 1632 m for the data points). This is especially true for larger dis-
tances because the difference between the Euclidean distance and the topological dis-
tance is small when the households are very close, i.e., only 0.2 or 0.5 km away from
each other. But when the distance becomes larger, it can involve a significant hike up or
down a mountain.

For both the Euclidean and topological models, greater neighborhood effects are
detected using the longer-distance definitions, being especially significant for 3 km and
4 km. These distances are roughly consistent with the area of an administrative village,
which may implement local policies (e.g., land or forest management) or carry out agri-
cultural education programs, making households within the area more similar to one
another. But there are also likely to be neighborhood effects that exist even outside the
shared administrative boundaries; e.g., people near such boundaries may interact with
one another or share natural resource conditions, but will still be classified into separate
administrative units. Therefore, dummy variables for the administrative village will not
fully capture all neighborhood effects. Even though there is a significant reduction in
spatial autocorrelation in model residuals at longer distances (7 km, 8 km, and 9 km) as
well, definitions at those distances do not show the same changes in significance levels
of independent variables as they do at 3 km and 4 km. As the distance became bigger,
a large portion of the dataset becomes categorized as neighbors, so the ESF method
becomes less effective in reducing spatial autocorrelation. Even though our results
demonstrate that neighborhood effects are more statistically significant based on using
longer-distance definitions, this does not explain why some distances capture neighbor-
hood effects better than others—for example, in the Euclidean definitions, the model
residuals are spatially autocorrelated at 3 km, 4 km, 6 km, 7 km, and 8 km, but not at
5 km (Table 5). Such inconsistencies could result from our relatively small sample size
or a few outliers (e.g., extreme values) in the data, but our results still demonstrate how
a data mining component can be useful to detect neighborhood effects and refine prior
theorization.
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6 Conclusions

The neighborhood context is recognized as a potentially important predictor of
individual-level behaviors as well as socio-demographic outcomes for individuals
and for origin households (Bilsborrow et al., 1984; Hawley, 1950; Lee & Cub-
bin, 2002; Pickett & Pearl, 2001; Sampson, 2003). In addition to sharing similar
social-economic characteristics, individual agents (e.g., persons or households)
in the same neighborhood or community interact closely with each other, and
thus tend to have many similarities in behaviors, values, and decision-making
processes.

Nonetheless, identifying what constitutes a "neighborhood" has proved to be
a challenge, both in theory and in practice. Due to difficulties in defining “neigh-
borhood” and the cost of collecting detailed substantive community-level data
(e.g., from interviewing community-level leaders directly to seek specific data on
population size and characteristics, presence of infrastructure of various types,
transportation facilities, wage and price levels, etc.: see Bilsborrow et al., 1984
regarding migration), researchers often resort to using existing administrative
or political boundaries, creating artificial sampling clusters (grouping data from
natural villages into artificial clusters), or otherwise creating “neighborhoods”
arbitrarily, rather than on substantive or environmental grounds. For example,
the boundary between administrative districts may pass through the middle of
a valley where inhabitants of villages naturally interact regularly. Our study has
experimented in one rural area of China in defining "neighborhoods" according
to Euclidean distance or topological distance using various neighborhood sizes,
and finds—in rural areas of China at least—it is only at certain sizes that we can
observe significant neighborhood effects, i.e., differences in results compared to
those of non-spatial models. Although the neighborhood sizes used (3-km and
4-km, in our case) might correspond to administrative units such as village, sim-
ply adding dummy variables for each village in a multilevel model cannot neces-
sarily capture these effects. Thus, relationships may remain hidden in the non-
spatial and multilevel models, or observed where they do not exist. Further study
is needed to better understand the relationships between a "true" neighborhood
size and the ones based on our data mining approach.

It is important to recognize that the neighborhood effects observed here are
not very significant, as indicated by the consistency of most coefficients’ signifi-
cance levels (p-value; Tables 4) in the spatial and non-spatial models. The sizes
of the coefficients of all variables also remain similar after ESF is applied. The
Moran’s I and Izl scores of the spatial models’ (with ESF) regression residuals,
however, do undergo significant changes under some of the neighborhood defini-
tions after eigenvector filters are applied. By calculating Moran’s I statistics for
the independent variables, we also find that several appear to have spatial auto-
correlation. Thus, we select ESF models to test for spatial autocorrelation based
on model residuals from the non-spatial models. The results identify three out of
five non-binary variables to be spatially autocorrelated, two of which (number of
laborers and area farmed) undergo changes in significance level after the spatial
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filtering was implemented, although no such change is observed in other spatially
autocorrelated variables. Household size, for example, is spatially autocorrelated
(Izl scores>1.96) under all four selected neighborhood definitions, but has little
change in significance level from incorporating ESF. In addition, a variable (edu-
cation) with little spatial autocorrelation changes its significance level after ESF
is applied (i.e., loses its statistical power). This may mean that the population
diversity of our data set is not sufficient to capture neighborhood effects well due
to the small area and fairly homogeneous population.

However, our results do suggest that employing appropriate modeling methods
and including tests on the effects of various measures of neighborhood size can help
to identify and capture the impacts of "neighborhood" and thereby generate more
accurate estimates of the coefficients of variables that are often subject to neighbor-
hood effects. At the same time, the methods demonstrated here will often, at mini-
mum, increase the accuracy of measurement of effects of some variables (e.g., at the
individual or household levels) even if they are not directly subject to statistically
significant neighborhood effects. As shown in many previous studies, spatial cor-
relation among variables is often present and should not be ignored. After including
the spatial filters (i.e., eigenvectors), the independent variable, household farmland
area, changed from being statistically insignificant to significant at several defini-
tions of neighborhood distances, while the number of household members of work-
ing age changed from significant to insignificant. It is important to note that when a
data-mining approach is used, neighborhood effects (e.g., distances at which it is the
most prominent, and its levels of significance) can alter depending on the dependent
variable and model under question. For example, Zhang et al. (2021) detected neigh-
borhood effects in 0.002 km, 0.1 km, and 0.5 km in their model on household par-
ticipation in PES programs using the same data. Both analyses illustrate that ignor-
ing neighborhood effects can lead to misleading and even incorrect conclusions (An
et al., 2016; Sullivan et al., 2017). The difference in neighborhood effects of the two
models also suggests that different distances should be tested in different models
even with the same dataset.

Finally, topological-distance-based neighborhood definitions might generate even
more accurate results for areas with large elevation variations such as our study site,
and many other rural sites around the world. Definitions of neighborhood gener-
ated with eigenvector filtering may be more relevant than, or at least can be comple-
mentary to, those captured by traditional approaches, e.g., using dummy variables
for each community or cluster controls. Therefore, we recommend that the ESF
approach be tested in other, especially larger or more diverse geographic conditions,
to better determine an appropriate size for "neighborhood" in different contexts,
according to the particular topic or decision process being studied, which can then
be incorporated in the model to correct for spatial autocorrelation and thereby lead
to better results in investigations of factors influencing people’s decision-making and
behavior. Replicating this method in many other different contexts and for different
variables can further enhance understanding of what an appropriate “neighborhood”
is for all manner of variables of human behavior, thereby facilitating the use of the
ESF or other methods described here to effectively control for the neighborhood
effects when trying to understand human behavior.
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