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Abstract

Human modification of land-cover has been a leading cause of floral and faunal species extirpation and loss of local and global
biodiversity. As natural areas are impacted, habitat and populations can become fragmented and isolated. This is particularly
evident in the mountainous areas of southwestern China that support the remaining populations of gianfAjlarajasié
melanoleuci Giant panda populations have been restricted to remnants of habitat from extensive past land use and land-cover
change. Households are a basic socio-economic unit that continues to impact the remaining habitat through activities such as
fuelwood consumption and new household creation. Therefore, we developed a spatio-temporal model of human activities and
their impacts by directly integrating households into the landscape. The integrated model allows us to examine the landscape
factors influencing the spatial distribution of household activities and household impacts on habitat. As an example application,
we modeled household activities in a giant panda reserve in China and examined the spatio-temporal dynamics of households,
the landscape, and their mutual interactions. Human impacts are projected to result in the loss of up to 16% of all existing habitat
within the reserve over the next 30 years. In addition, we found that accessibility largely controls the spatial distribution of
household activities and considerable changes in management and household activities will be required to maintain the current
level of habitat within the reserve.
© 2004 Published by Elsevier B.V.
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1. Introduction 1

Appropriation of natural areas through urban and:

T Comespondi thor. P +add ot of G agricultural expansion has drastically altered much ot
orresponding autnor. Present aadress: bepartment or Geogra- .

phy, University of Louvain, Place Pasteur 3, 1348 Louvain-la-Neuve, the land Surfac_e_wtO_USEk et al_" 1997; Ru“edge_ et

Belgium. Tel.: +32 10472871; fax: +32 10472877. al., 200). Modification of habitat through less in- s

E-mail addresstinderman@geog.ucl.ac.be (M.A. Linderman).  tense land use such as fuelwood collection has also re-
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sulted in drastic changes in natural systehis ét al., models is often difficult given the complexity of the ss
2001). These changes have enormous implications for models and human-environment syste@suclelis, s
ecosystem processes, biodiversity, and species persis2007). Cellular models, discreet in time and space, als
tence Ceballos and Ehrlich, 2002This is particularly low for simplified modeling relationships and providess
relevant for the conservation of the giant panéd-( a structured environment in which various interactions
uropoda melanoleugaHabitat destruction and poach- and levels of detail can be studied (Benenson, 1998)eo
ing have reduced the wild population to approximately ~ The overall goal of the model, Household And Land-
1000 pandasSchaller et al., 1985Many studies have  scape Integration Model (HALIM) was to develope:
been conducted on panda biology and behavior (e.g.a generalized modeling approach in which spatioes
Schaller et al., 1985 Most of the studies are empiri- temporal household processes could be integrated into
cal or field based. There have been also a number ofrealistic landscapes. For this study, we used a genesc
modeling studies, which have simulated panda pop- spatially explicit cellular model to examine the interac-
ulation dynamics Zhou and Pan, 1997panda rela-  tions of households and panda habitat through their me-
tionships to bamboo dynamicRéid et al., 1989; Wu tual relationships with the landscape. Using a generig
et al., 1996; Carter et al., 199%nd household prefer-  cellular framework facilitated the use of detailed digitalss
ences and characteristics related to panda haBineei( data to accurately describe the landscape and house-
al., 2001, 2002 However, few studies have examined hold characteristics while providing a means to intex
the factors influencing the spatio-temporal dynamics grate inherently different natural and household pror
of households, their impacts on giant panda habitat, cesses. Furthermore, this flexibility provides a practir
and their mutual interactionsi( et al., 1999. To bet- cal and accessible framework in which varying aspects
ter understand household impacts on giant panda habi-and complexity of socio-economic and natural systems
tat, we developed a model in which the interactions and their interactions can be integrated. 76
between households, the landscape, and giant panda As a preliminary study, we used HALIM to evaluater
habitat could be studied and based on the analyses prothe spatio-temporal effects of landscape-level houses-
vided practical information for conservation and man- hold activities on giant panda habitat in southwestr
agement planning. ern China by integrating households, forest cover, and
Much of human land-cover change is carried out at wildlife habitat through their mutual relationships with e:
the household level as households are basic decisionthe landscape. This allowed us to examine the individ-
and consumption units.{u et al., 2003. The rapid ual spatio-temporal dynamics and the various interaes
increase in the number of households increases the detions between the landscape, household activities, ard
mand for more resourceski( et al., 2003. Coupling wildlife habitat. Our specific aims of this study weress
household activities with natural processes is therefore to examine the influence of landscape-level household
essential to accurately model human impacts on natural characteristics on the quantity and spatial distributiog
systems, to increase our understanding of human inter-of panda habitat and to determine the landscape fag-
actions with landscapes, and to provide viable options tors influencing these household activities. Using these
for mitigating future impacts. Various approaches to results, we examined possible consequences of vasi-
modeling spatially explicit human activities and their ous policy scenarios, provided suggestions to mitigate
impacts on natural systems have been developed, in-damage to the remaining panda habitat, and identifiee
cluding statistical techniquedMertens and Lambin, important landscape, household, and habitat interae-
1997, agent-based models (Berger, 2001; An et al., tions for future modeling efforts. o
submitted for publication), and cellular approaches
(Baltzer et al., 1998). Statistical models have provided

detailed information of the spatial dynamics of sys- 2. Methods %
tems, but are often not conducive to generic frame-
works (Lambin, 1994. More complex agent-based ap- 2.1. Study area %

proaches allow increasingly detailed human interac-
tions with each other and the environment in which Our field study was conducted in the Wolong Na-
they live. However, building descriptive agent-based ture Reservein southwestern Chifay. 1), located be- o
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Russia

Kazakstan

Mongolia

Autonomous
Region

india '
i)

Thailand

Wolong Nature Reserve r

Fig. 1. Wolong Nature Reserve lies in the Qionglai Mountains between the Tibetan plateau and Sichuan basin.

tween 10252 and 10324'E and 3045 and 3225'N. ficially banned in the reserve since 1975; however, 6
Wolong is one of the largest reserves (covering ap- varying degrees illicit logging does continue (M. Lin-us
proximately 2,00,000 ha) dedicated to giant panda con- derman, personal observation). Other human activities
servation and is estimated to contain about 10% of have also been a major contribution to forest loss ang
the remaining wild panda populatioZiang et al., consequently, to the spatial distribution of habitati( 119
1997. Approximately 40% of the reserve is currently etal., 1999, 2001 120
forested. Elevations range 1200-6525 m creating sev-  In 2001, approximately 4440 local residents in abou:
eral climatic zones and consequently high biological 1000 households resided within the reserve. The ma-
diversity. The distribution of overstory vegetation in jority of these residents are farmers with the primarys
the reserve is related to the elevation. economic activities consisting of farming maize and.

Most forests in the reserve were logged (either clear vegetables, raising livestock such as pigs and yaks, and
cut or selectively cut) from 1916 until the reserve was collecting wild herbs. A household usually relies on fures
established in 1975, reaching peak intensity between elwood for heating, cooking, and livestock feed prepaz
1961 and 1975%challer et al., 1985Commercial log- ration (An etal., 200}. Selective logging for household s
ging typically resulted in relatively large clearcuts dis- fuelwood collection typically changes the species conge
tributed throughout the reserve. Logging has been of- position in the overstory and reduces canopy cover unti
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all overstory vegetation is removed. Since 1974, immi- gest that much of the reserve was commercially logged
gration and new household creation have largely beenfrom 1916 until 1975. Measurements taken in the late
dictated by local policy with immigration restricted by  1990s indicated much of the lower altitude forests tes
marriage and new household creation limited or inad- be well below old-growth volumes. Average volumesso
vertently encouraged through various policies. House- for broadleaf forests below 2600 m were approximately:
holds have traditionally focused on subsistence agri- 80 nf/ha. It is likely that these forests were the first ta:
culture, but increasing access to markets has providedbe harvested in the first half of the century and have

some cash crop opportunities. regrown to current volume levels. 184
Based on regrowth data for the broadleaf forests
2.2. Data and model parameterization in Wolong, we estimated the average volume fags

1965 to be approximately 453ha. Stand volume i
Several sources of data were used as model input orfor subalpine conifers was on average approximately
used to parameterize and validate the model. Satellite 300 n#/ha. Subalpine stand volume was high enough
data and topographic maps were resampled to a pixelsuch that variations in estimates would not significanthyo
size corresponding to the landscape grid and used to de-influence the model results. Forest regrowth was it
scribe the abiotic features and the distribution of house- cluded in the model to allow for previously logged rezs.
hold activities and vegetation throughout the reserve. gions to regenerate and the addition of biomass and
Socio-economic and demographic data were collected regrowth in selectively logged cells. Separate regrowth
fromlocal government agencies and our household sur- models were developed for each forest type based 6n
veys conducted from 1998 to 200Ar( et al., 200} species composition, stand age, and altitudinal zone.
to determine fuelwood collection, household locations, Model parameters were derived from over 30 plots dis-
and household creation rates. Literature on panda be-tributed throughout the reservkig et al., 1999, and 1
havior and landscape analyses of habitat was used to paapproximation of species regrowth and yield models
rameterize the habitat sub-mod8thaller etal., 1985;  was derived from the data of the Sichuan Department
Ouyang et al., 1996; Liu et al., 20p1 of Forestry {fang and Li, 1992 201
Abiotic information was derived from topographic A household survey was conducted from 1998 te.
maps of the reserve. A Digital Elevation Model (DEM) 2001 and included 220 of the households within the
was interpolated from digitized 100-m contours. Slope reserve An et al.,, 200). Households were queriedzo
and aspect data were derived from the DEM. Informa- on fuelwood use, fuelwood collection, agricultural acsos
tion on the distribution of forests was obtained from tivity, household creation, and other associated sociges
the classification of four dates (1965, 1974, 1987, and economic and demographic information. Additionak:
1997) when remote sensing data were obtained. Thesocio-economic and demographic information was ob
1965 data are Corona stereo-pair photographs acquiredained from local government records. Census infofes
as part of the Corona photo-reconnaissance satellitemation was obtained from each township within theo
project (USGS Eros Data Center, Sioux Falls, South reserve. Local governments also maintain information
Dakota). The 1974 data are Landsat MSS images, andon land allocated to each household. From the surveys
the 1987 and 1997 data are Landsat TM images. To ac-and census data, it was found that each household main-
count for the spectral and spatial differences between tains on average 0.7 ha of agricultural land. Including.
the data, each image was visually interpreted into for- the area of the physical house, garden area, and other
est and non-forest areas (for classification details seebuildings, the typical total area is approximately 0.8 haus
Liu et al., 200). Therefore, the scale of the model was chosen to be 9Gmn
Uncertainty in the 1965 stand volume of the various x 90 m (0.81 ha). New households have been added:10
forest types posed the most difficult parameterization the reserve at a rather steady number each year he-
problem. While basic coverage information was avail- tween 1965 and 1997. On average, approximately 24
able from satellite photographs, data on the average new households were created each year. 21
volume throughout the reserve were scant. Quantitative ~ We measured the location of each househoid
information dating back nearly 40 years is either diffi- through the use of field measurements or lkonos %s
cultto obtain or non-existerfachaller et al. (1985ug- m resolution satellite imagery. lkonos imagery ace
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quired in 2000 by Spacelmaging was georeferenced
with ground control points measured using a Global
Positioning System with sub-meter accuracy (Trim-

Elevation Slope Aspect

ble Pathfinder Pro XRS receiver and Community Base
Station). We then identified households in the images
and recorded the location. We used all households cre-
ated on or before 1965 to create the initial distribution
of households to correspond to the initial 1965 forest
cover information.

Fuelwood use was calculated based on a survey of
over 50 households and physical measurements of an-
nual use An et al., 200). The volume of wood varied
between 8 and 30#rand averaged 15A base an-
nual volume of wood used by each household in the
model was then 15 faWe derived preference for fuel-
wood collection and household creation sites by com-
paring DEM and slope coverages, and house locations
and fuelwood sites. Distances between household lo-
cations to fuelwood collection sites varied from 50 m
to over 5km. The average distance for 100 households
surveyed was approximately 500 m. Households pre-
ferred to collect fuelwood in flat areas (<26lope)
and had a decreasing probability relative to elevation.

Behavioral studies have described panda habitat as
a function of forest cover, slope, and altitudgehaller
et al., 1985; Ouyang et al., 1996; Liu et al., 2Dp01
Therefore, we determined habitat suitability using a
multiplicative combination of the three factors (for-
est cover, altitude, and slope) available for the 30-
year time spanl(u et al., 200). Because non-forested
areas are considered unsuitable habitat for the gi-
ant panda, forest/non-forest classifications were multi-
plicative factors of 1 or 0, respectively. Slope and al-
titude multiplicative factors were proportional to the
observed use by pandas.

2.3. Model description

Our model (HALIM) was developed using SELES
(Spatially Explicit Landscape Event SimulatoPa(l
and Fall, 2001; Fall et al., 20D1SELES is a high-
level programming language that facilitates modeling
of the temporal and spatial dynamics of gridded land-
scapes. SELES also allows the incorporation of geo-
referenced raster data, the definition of systems that
interact on gridded landscapes, and the temporal and
spatial dynamics of these systems. SELES provides the
flexibility to incorporate these various systems through

Fuelwood
Collection

Household
Creation

Forest
Cover

Giant
Panda
Habitat

Fig. 2. A conceptual flow schematic diagram of the model.

sub-models and individual modeling aspects of Markow
chains, cellular automata, percolation models and oth-
ers according to the process being modeled.
HALIM includes four sub-models: fuelwood collec-2z
tion, household creation, forest regrowth, and panda
habitat. The resulting impacts of the distribution ofs
household activities are integrated directly into giant:
panda habitat models and allow model predictions ta
be measured in terms of changes to landscape indiees
of panda habitat. The sub-models and their interactions
are shown irFig. 2 Household activities and forest dy-zs:
namics are influenced by the abiotic characteristics af
the landscape. Each of the household activities infless
ences the spatial distribution of forest cover. The forest
regrowth sub-model allows for forest re-establishment
and annual growth of non-climax forests. Finally, thes
suitability of giant panda habitat is determined frong:
forest cover along with abiotic factorsi¢ et al., 200).
The landscape was divided into a regular latticgo
composed of 90 nx 90 m grid cells. For this model, the 20
probability of the initiation of most sub-model eventss
(e.g. fuelwood collection, household creation, etc.) oes

273

288

ECOMOD 3787 1-18



293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324
325

326

327

328

329

330

331

332

333

334

335

336

337

338

DTD 5

6 M.A. Linderman et al. / Ecological Modelling xxx (2004) XXX—XXX

curring at each grid cell was determined by the pixel
values (data layer values) of the cell and, depending
on the sub-model, surrounding cells. The number of
sub-model events is determined by the sub-model pa-
rameters with the location of the event stochastically
determined by arelative cell probability (e.g. a cellwith
a probability of 0.5 has twice the probability of the oc-
currence of a landscape event compared to a cell with
a 0.25 probability, but does not have a 50% probabil-
ity of an event occurrence). Depending on the process
of interest the model also allows for landscape events
to spread to neighboring cells (e.g. if a cell does not
contain sufficient fuelwood for the annual collection
of a household’s fuelwood needs, necessary fuelwood
collection can take place in a neighboring cell).

The sub-models are described below along with ex-
amples of the parameters and probability functions:

e Fuelwood collection- It was assumed that house-
hold residents collect fuelwood based on availabil-
ity, accessibility, and previous fuelwood collection
activity. Typically, fuelwood is collected around the
household. As these areas are diminished, foraging
extends to the neighboring areas characterized by
easy accessibilityLfu et al., 200). Many residents
have been forced to travel several kilometers to col-
lect annual stocks of fuelwoodA( et al., 200].
Accessibility is characterized in this model by the
distance to collection site, slope, and elevation and
is defined as a cost function relative to the distance
to roads and main paths and topographic variability
(i.e. slope and elevation difference along the path
to the cell location). The probability function was a
linearly decreasing function of increasing cost:

Cost
P(fuel D=1~ | Maimum cos
(fuelwoodcost) ( (MaximumCOS>>

Forest cover and average yield per hectare deter-e
mined availability. Households are also more likely
to return to the same cell location, if sufficient forest
volume exists, or neighboring cells of previous fuel-
wood extraction. Therefore, a higher probability of
collection was assigned to cells previously harvested
and to neighboring cells. The overall probability of
fuelwood extraction for each forested cell is then a
multiplicative combination of these factors.

e Household creationr- The number of new house-
holds each year was predetermined based on po-
tential policy and socio-economic impacts. For ex-

ample, past trends have been relatively stable. Palis

cies, however, have been shown to affect househald
creation. Therefore, a range of household creatian

rates about the past trend was examined. Each new
household was presumed to establish its own agtis

culture land, clearing the forest area or occupying.

previously deforested area. The location of each new

household was dependant on suitable agricultuie

land and proximity to transportation routes and othes

households. The household sub-model was, these-
fore, determined by three parameters: distance—cest
factor to transportation, abiotic factors, and proximeso

ity to other households. The preci¥eandY coor-
dinates of the actual residence were not included in

this model. Rather, households, including the physs

ical residence, agriculture land, garden area, ard
various other buildings, were presumed to occupy

cells of the landscape. Suitable agriculture areas ate
based on abiotic factors: slope, aspect, and eleva-
tion. While agriculture activity occurs on slopes upss

to 40°, low-slope areas are preferred. Preference fas

low-elevation areas was also considered. For exagr
ple, based on survey data probabilities for househaild
placement based solely on elevation were measur%
as:

351

{0.00 ¢ > 2500)

P(househol¢k) = {0.08(2250< e < 2500}
~ {0.82(1750< ¢ < 2250}

{1.00 (¢ < 1750}
In areas of higher elevatio)( preference was given s
to slopes facing south to maximize sunlight. Housess
holds were also more likely to develop land adjaceat
to previously established houses and within shas
distances (typically less than 2 km) of major transss
portation routes.
Forest cover— Four forest categories (non-forestzn
evergreen broadleaf, deciduous broadleaf, and suh-
alpine conifer) were identified throughout the ress
serve based on remote sensing, elevation, and speeies
distribution Schaller et al., 1985Initial stand vol- a7
ume was estimated for each elevation zone based
on approximate time and intensity of commerciak-
logging activity. Each forested cell was assumed t
increase in biomass and each non-forested pixel had
a probability to re-establish based on proximity tes
other forest pixels and time since deforestation. Rex
growth models were derived for each of the pres:

370
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dominant species within each elevation zone from teristics and the relative influence of each individual

published and empirical dat¥gng and Li, 199} parameter on the model output. Validation was done
Regrowth is calculated based on species and approx-through comparison of model output over this time tes
imations of logistic regrowth curves of total volume. measured habitat and household distributions. 430
An example of the calculation is given below: We conducted sensitivity analyses for the household

{0.0(t < t1ag)} and fuelwood collection sub-models. We examined the

V(t, Van, Vmax) = (V & Van(t>tagandV < Vimay)] sensitivity of the household sub-model to each of itss

where't is the time since harvestig is a nor- components (abiotic, proximity, and cost function) bys.

mally distributed lag time since harvest until re- C0mparing scenarios excluding components or varying
establishment,y, is the annual volume increment, Parameter estimations and the measured household dis-

and Vimay is the maximum volume according to tribution in 1997. This was done because we wanted o
species type. Upper asymptotic limits on volume show the overall influence each function had on the
were controlled by stand maximum values rather selection of new households and because some fume-

than time due to concurrent fuelwood collection. tions could not be varied systematically (e.g. abiotic inzo
« Habitat suitability— The final habitat classification ~ fluénces were based on conditional probabilities). We
was a categorized suitability measure of four classes Measured accuracy and calculated landscape metiies
termed highly suitable, suitable, marginally suitable, Pased on the average of 20 simulations. We also com-
and unsuitablel(u et al., 200). The impacts from ducted systematic analyses of sensitivity of individual
household activities are reflected in the habitat suit- Parameters for the fuelwood sub-model, such as the
ability model as impacts from fuelwood activity and ProPensity to return to previous fuelwood collectiors

agriculture development. Measures of panda habitat sites and distance to fuelwood collection sites. Sinee
quantity and suitability allow analysis of the tempo- parameterization of stand volumes for broadleaf forests

ral and spatial dynamics of, the influence of house- below 2600 m contained relatively large uncertaintyys

hold characteristics on, and future giant panda habi- several average stgnd volumes for the broadleaf forests
tat. were tested, including 30, 45, 60, 75, and S0im. 451
The accuracy of the predicted distribution of houses

Landscape events (e.g. fuelwood collection, forest holds was measured through comparison of predicted
regrowth) occurred on an annual time frame. The first |ocations of households in 1997 to measured locations.
landscape event in the model each year is the estab-Precise cell-by-cell prediction, however, was not thes
lishment of new households and associated agricultural intention of this model. Foremost, the model is stochass
development. Each household then collects its annualtic. In addition, households do not occupy all potentiak,
fuelwood volume. At the end of the year, forest re- agricultural areas within the reserve. This leads to aks
growth occurs for each forested cell and the suitability eas with similar probabilities available for householes

of panda habitat is updated. establishment. However, as the spatial arrangementof
households may have animpact on habitat, particularky

2.4. Model validation and sensitivity analyses crucial secondary habitat, we also examined the percesat
of predicted households falling in close proximity (14ss

Model validation and sensitivity analyses were 2, and 3 cells) of measured households. 464
based on simulations started in 1965 with the initial Impacts from fuelwood collection were measureds

distribution of forest based on the classification of by comparison of predicted and measured impacts 40
forest/non-forest categories from the 1965 Corona pho- forest cover and habitat. Again, we did not expect exs
tographs. The original distribution of households was act correspondence between the model predictions agd
based on all households established prior to or in 1965. the measured distributions. Collections sites are, to:@
The sensitivity and validation simulations were run for degree, stochastically chosen both by the model (i
32 years to correspond to the latest remote sensingas with households, not all potential fuelwood sites ake
data available (1997). We measured sensitivity through chosen) and households (i.e. some degree of house-
varying individual parameters such as the rate of new hold decisions is unpredictable regardless of informas
household creation, fuelwood use, and forest charac- tion available). In addition, the natural variability of the:z
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forests was not fully captured in the visual classifica- ing patch compactness, and connectivity between pateh
tions (i.e. the visual interpretation of forest distribution centroids Forman and Godron, 1986hat describes s

did not include all forest gaps and edge complexity at clustering of patches. 525
a 90-m resolution) and illicit logging activities not in-
cluded in the model make a direct accuracy assessmen2.5. Household impacts 526
difficult.

To minimize the effect of natural and other influ- To examine the relative influences of different-

ences on the accuracy assessments, we limited analhousehold conditions on the landscape, a variety of
yses to regions within 5km of the current household scenarios were run from 1965 until 2030. Each sces
distribution. This distance corresponds to the approxi- nario was started using 1965 land-cover and house-
mate maximum distance residents travel to collect fu- hold data. From 1965 to 1997, we based the model
elwood. Within the 5 km buffers, we used three valida- parameters on measured values. We then varied model
tion methods: visual appraisals of multitemporal data; parameters for 1997—2030 to examine the impacts @af
direct comparison to a supervised classification; and a possible changes. These scenarios represent situatians
comparison between landscape indices. We comparedwhere new policies were introduced after 1997. Params
predicted fuelwood impacts on forest cover to visual eterswe examined included fuelwood consumption peg
classifications of forest cover from 1974 to 1997 satel- household and the household growth rate (or imms
lite imagery (iu et al., 200). We compared measure- gration/emigration rate). The length of the simulationss
ments of the distribution of households and digital clas- was chosen based on the reliability of the model oves
sifications of forest cover as measured in 1997 to final the previous 32 years and to permit sufficient time tao
outputs from the model. Digital classification of the compare various scenarios and predict future impacis.
1997 forest cover was possible with extensive ground We compared model scenarios based on impacts to gi-
sample data and provided a more detailed snapshot ofant panda habitat as deforestation from fuelwood asd
the distribution of forest cover. Accuracy is reported household construction removed habitat. 544
as the percentage of predicted cells that correspondto These scenarios included changes in fuelwoed
measured cells (e.g. predicted non-forest versus mea-consumption levels of 30, 15, 10, 5, and &m s«
sured non-forest cells). This ignores possible omission year/household and household growth rates of 36, 24,
errors and was used because of the difficulty in distin- 12, 0, —12, and—24 new households created or resss
guishing natural variability and human impacts (e.g. il- moved each year after 1997, as well as combinationssef
licit logging) on forest cover from household activities these parameters. We chose these levels to reflect possi-
even within 5km of the households. Visual compar- ble future household characteristics resulting from nesa
isons of model predictions and measured forest cover policies and management efforts such as subsidies, +&-
change are shown for comparison between commissionstrictions, and/or increased accessibility to electricityss
and omission errors. For example, efforts to limit fuelwood collection anckss
In addition, comparisons were made between the reclaim agriculture land were initiated in 2000. Subsss
quantity of forest area and disturbed areas and land- sidies have been offered in exchange for maintaining
scape metrics such as patch size, shape, and complexforests. The administration has also attempted to rer
ity. Given the difficulty in distinguishing between tim-  strict the location and quantity of fuelwood collectionsss
ber logging, fuelwood collection, and natural variabil- Electricity prices are also currently unaffordable foss
ity in forest cover, simple accuracy comparisons of the most local farmers, particularly for heating and cookeso
model predictions relative to the measured landscapeing purposes. Affordable and consistent alternative esnr
(particularly those from the detailed classification) do ergy sources may influence fuelwood use in the futuse
not provide a complete picture. The impacts measured (An et al., 2002. Each of these or the combinationses
from simulations were also reported as the landscape of these changes may provide an incentive to reduge
indices relative to the impact of interest (e.g. household fuelwood use. In addition, efforts to encourage emiss
distribution and forest cover). Indices used include total gration out of the reserve are being instituted potegs
number of patches, mean patch size, corrected perime-tially decreasing the number of households. Howeves;
ter to areaf/a) ratio (Baker and Cai, 1992describ- there is an increasing preference by younger adultsste
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establish new households, and in response to subsidy Accuracy in terms of predicted household locationss
opportunities, new households have actually recently agreeing with measured cell locations of household dis=
increased at much higher rates than in the past. There-tribution varied from 20 to 27%Table 2. Incorpo- e
fore, to reflect the possible range of values, we chose rating all of the parameters hypothesized to influence
fuelwood consumption levels ranging from the current household placement resulted in an accuracy of 27, 68,
maximum known household consumption (double the and 82, and 88% for predicted households within @
current average) to no fuelwood use. We also exam- 1, 2, and 3 cells from measured householtib(e 3. &9
ined household creation rates varying from a 50% in- This suggests thatthe model was predicting householgs
crease in household establishment to a net emigrationessentially within the same areas as those measuted
of households to reflect policy influences on household to also contain households. Not including the distanee
creation over the next 30 years. function yielded the lowest accuracy of 63% for press
dicted households within 3 cells of measured houses
holds. The accuracy was 80% when a preference ¢

3. Results create new households next to existing households was
not included. Excluding the selection based on abiotie

3.1. Model validation and sensitivity factors (i.e. slope and elevation) achieved an accurasy
of 81% within 3 cells. 629

To examine the overall influence of the household Sensitivity analyses conducted for each of the fus
sub-model parameters (e.g. topography, distance toelwood parameters showed influences from variations
transportation, and proximity to other households), sev- in the distance and proximity factor§gble 3. Relax- ez
eral variations of the household sub-model were com- ing the tendency for households to collect fuelwoods
pared. We could not do a typical sensitivity test for from previously cleared areas led to more fragmentax
this sub-model as some of the parameters were em-tion and is reflected in the landscape metrics. Variaties
pirical look-up tables. Therefore, to examine the in- of the proximity factor three times more likely to re-s:
fluence of each parameter, model outputs were com-turn to previous sites resulted in 35% fewer patches
pared for several combinations of sub-model param- and 54% larger patch sizes. Reducing the proximitys
eters. For example, the household sub-model includ- factor three times resulted and 52% more patches aad
ing all three hypothesized parameters (abiotic, dis- 34% smaller patch siz&éble 3. In addition, perimeter ez
tance, and proximity)Kig. 3a) resulted in approxi-  and connectivity indices show increasing clustering as
mately the same number of patches and sinjar the proximity factor is increased. Varying the distance:
ratio as the measured households. This sub-model alsocost factor by 20% resulted in similar results. Easings
led to a 44% larger mean patch size, and slightly the influence of the distance factor generated more dis-
higher connectivity compared to the measured dis- persed impacts occurring in smaller patches. This ds
tribution (Table ). Excluding abiotic preferences re- seen in the patch characteristics with more and smalker
sulted in 71% more patches of householtiahle 1) patches and decreasp#h ratios and diminished con- s«
and caused some households to be placed in re-nectivity (Table 3. Increased probability of using nearess
gions of atypical topographic relief (e.g. areas of ex- areas conversely increased patch size, decreased patch
treme slope)Kig. 3). Excluding the distance and to- number, and increased connectivity between patches.
pographic variation from main transportation routes Patch size varied by 17.9-33.7% and patch number vai-

yielded a wide distribution of householdBig. 3c). ied by 24.1 and 20.5% for a 20% decrease and increase
The number of patches was more than three times thein the cost factor, respectivelifgble 3. 653
measured distribution. Mean patch size gofa ratio Trends in deforestation relative to initial stand volsss

were both considerably loweféble ). And, the lack ume were decreasing area of impact and reduced frag-
of a proximity factor resulted in decreased clumping mentation since more volume was available in press
of households (low connectivity), smaller patch size ferred collection areagéble 3. While the outputs us- es

and an increase in the number of patch&sb{e J) ing each of the five initial volumes shownlitig. 5d0  ess
relative to the measured distribution of households seemingly conform largely to expectations, increased
(Fig. 3d). peripheral impacts occur at both increased initial vols
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Fig. 3. Comparisons of the influence of the three multiplicative factors contained within the household sub-model. Accuracy of each scenario
is shown relative to the measured households with corresponding predicted households and measured households shown in black, incorrectl
predicted households are shown in dark gray, actual households where no households were predicted are shown in white: (a) shows the predicte
household distribution in 1997 including all factors relative to the actual distribution; (b) is without abiotic preferences; (c) withoutarsst fact

and (d) without proximity influences.

Table 1
Landscape characteristics of the measured households in 1997 (Households 1997) compared to model scenarios
Number of patches Mean patch size (ha) p/aratio Connectivity

Households 1997 9a0 40931 149 0046

All parameters 1135 59101 150 0053

No proximity factor 26100 24905 141 0015

No abiotic factor 16190 40229 146 0034

No cost factor 280 23152 129 0009

Values are averages of 20 simulations for each scenario.
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Table 2
Accuracy of the predicted household locations for the model scenarios relative to the household locations in 1997

Cells

0? 1v 2 3
No cost factor 20.61.% 47.3+24 57.1£2.6 63.0£2.4
No proximity factor 21.2+1.1 54.3+-1.7 70.6-1.3 79.8-1.4
No abiotic factor 22414 55.8+2.4 71.8+2.0 81.2+2.3
All parameters 27.40.7 67.9+-1.5 82.5+-1.9 88.3:1.9

a Accuracy as measured as predicted household locations occurring at measured household locations (titled 0).
b Predicted locations within 1, 2, and 3 cells (labeled 1, 2, and 3, respectively) of measured household locations.
¢ Uncertainties represent one standard error of the accuracies of the 20 simulations conducted for each scenario.

umes and decreased volumes. Landscape metrics andover, though some differences from natural and othes
overall model accuracy also follow this trenthple 3. activities are apparent. In addition, the model was sugr
The lowest number of patches occurred when the ini- cessfulin capturing the basic trend in the distribution ef.
tial forest stand volumes was 45tha. Decreasing  households based only on the initial 1965 distributioss
stand volume caused larger overall habitat loss, par- of households. 684
ticularly the core area nearest to households; however, Accuracy and sensitivity analyses were done to des
smaller peripheral impacts were more common. As ini- termine the overall validity of the model and the inwss
tial stand volume was increased, the overallimpact was fluence of individual parameters. The accuracy of pres
diminished, however small pockets of impact emerged dicted impact sites relative to measured impact alse
where more continuous impacts previously existed. reflects more concentrated impacts as initial volume ds
These trends are clearly shown in the decreasing patchincreasedKig. 5). As fuelwood activity is focused on s
perimeter and mean patch size. core areas near households, model accuracy increases.

Fig. 4shows a multitemporal comparison of the pre- At an initial stand volume of 30 Atha, the overall pre- ss
dicted 32-year simulation of household activity and the diction accuracy is approximately 55%. As the VOlsss
measured forest cover within 5km of all households. ume increased to 90%tha, model accuracy increasedss
There appears to be a good correspondence betweero 64% (Table 3. The increase in accuracy is largely ads
the model outputs and measured forest distribution. result of smaller areas being affected only near house-
The basic trends in forest cover are comparable be- holds and decreased influence of stochasticity in choes-
tween measured and predicted distribution of forest ing distant fuelwood sites.

Table 3
Sensitivity of individual factors used within the fuelwood sub-model
Factor Parameter Number of patches Mean patch size (ha) p/aratio Connectivity index
Proximity* 0.33 1252 758 1668 Q719
1 1922 492 1606 0336
3 2915 327 1538 Q170
Distancé 0.8 145.8 65.8 1.630 0.546
1 1922 492 1606 Q0336
1.2 2316 404 1587 Q277
Initial volume (m?/ha) 30 2114 51.9 1.567 0.365
45 1922 492 1606 Q336
60 2587 336 1540 Q0212
75 2659 303 1502 Q161
90 2463 305 1502 Q167

Values in bold represent hypothesized values.
* The proximity and distance coefficients are unitless multiplicative factors.
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Measured Forest Change Predicted Forest Change

Fig. 4. Comparisons between visual classifications of satellite data from 1965, 1974, 1987, and 1997 and predicted forest cover due to househol
activities of corresponding years.
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()

(b) (e)

Modeled/Measured

I Forest/Forest

I Nonforest/Forest
B Forest/Nonforest

[ | Nonforest/Nonforest

(©)

Fig. 5. Differences between predicted forest cover due to fuelwood collection compared to the digital classification at various starting volumes
for low-elevation forests. Forest/forest and non-forest/non-forest categories represent agreement between predicted and measured forested an
non-forested cells, respectively. The non-forest/forest category represents areas where the model predicted non-forest and the dagitah classific

was forest. Forest/non-forest is the opposite case: (a—e) with starting volumes of 30, 45, 60, 75, 3 9@spectively.
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Table 4

The influence of household characteristics on habitat over 65 years 1997.
(1965-2030) relative to a baseline scenario of 0 new households per

year and 0 ri'year of fuelwood consumed after 1997

Household growth Fuelwood Change Change in habitat

rate (households consumption intotal <2600m of
per year) (mPlyear) habitat  elevation (%)
(%)
0 0 000 000
24 0 —0.06 —-0.18
24 5 —-1.34 -3.79
24 10 —-2.61 —7.36
24 15 —-3.32 -9.33
24 30 —-6.06 —1584
—24 15 —1.84 -5.17
-12 15 —-212 —6.16
0 15 —-2.77 —7.74
12 15 -321 —8.99
24 15 —-3.32 -9.33
36 15 —-431 -1174
12 10 —2.26 —6.41

3.2. Household impacts

M.A. Linderman et al. / Ecological Modelling xxx (2004) XXX—XXX

is required to maintain levels of habitat as measuredin
725
New housing development did not have the same
influence on the total habitat co-opted by households
as fuelwood consumption levels did. A 50% increase:
in the number of new household starts resulted in-a
26% increase in low-elevation habitat loss relative teo
baseline scenarios. Cessation of new housing develegp-
ment following 1997 still led to the loss of nearly 3%z
of the entire reserve and 8% of low-elevation habitat
compared to scenarios with no new households and
no fuelwood consumption following 1997. And a netss
removal of 24 households per year (the same number
previously being added per year) only resulted in a 45%
reduction in habitat loss compared to baseline scenas-
ios. As seen from a 50% increase in household creatian
with no fuelwood collection, increased population ando
resulting household creation contributed little to habi=:
tat loss because considerable areas around househalds
are already cleared of forest cover. Modest reduction
in both future new housing development and fuelwood:
consumption (12 households per year and $§ear) s
led to approximately 30% less habitat loss relative tas

Projected household impacts on panda habitat are current levels of new housing and fuelwood consump:

shown inTable 4 Current levels of household creation

and fuelwood consumption caused nearly an additional

10% habitat loss below 2600 m of elevation compared
to conditions in which no additional households and
fuelwood collection occurred after 1997. Across the
entire reserve, an additional 3% of habitat was lost

compared to no new household impacts after 1997.

Levels of household fuelwood consumption were sys-
tematically varied from 0 to 30 #fyear to examine

the influence of fuelwood consumption on habitat loss.
An increase in fuelwood consumption after 1997 to
30 nPlyear would resultin a nearly 70% increase in loss
of habitat from the current level of 15%year. Over

6% of the reserve and nearly 16% of the low-elevation
forest would be further impacted by doubling the con-
sumption of fuelwood. Reducing fuelwood consump-
tion by two-thirds reduced the loss of habitat below

tion.

748

4. Conclusions and discussion 749
HALIM was developed to examine the relationshipso
of households to the landscape, to assess the influence
of the landscape on household activities, and to pra-
vide a practical framework in which the interactions bes:
tween households and the landscape can be simultanae-
ously studied. The study does point out areas where fus
ther analyses are needed. For example, more detailed
information on the biophysical characteristics such as
total available biomass, growth rates, and efficiency s
the conversion of biomass to fuelwood might contributes
to the model. Except for the Corona photographs used
for this study, very little information on the state of thee:

2600 m of elevation by 59% compared to baseline sce- forestin 1965 was available. However, comparing pree:
narios. Forest re-establishment will only play a limited jections of household creation and fuelwood collectioss
role over the next 30 years as re-establishmenttimes arefrom 1965 to a time when there is more detailed infofe.
typically 30-50 years. In the next 30 years, habitat loss mation permitted a better estimate of forest conditions
may largely be dictated by fuelwood consumption and in 1965 and provided insight into factors contributing t@s
increases in volume of current stocks. Therefore, a nearhabitat loss. Comparisons of predicted forest loss from
cessation in fuelwood collection over the next 30 years 1965 to 1997 to measured forest conditions in 199
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for several scenarios of the average starting volume of wood collection locations, slope, and elevation. Agaimy
low-elevation forest further suggests that these forests the model captures the trend in household reductiofns
were already at relatively low volumes. The lower for- in forest cover. The simplicity (e.g. four household cress
estvolume potentially magnified household impacts on ation factors) and success of the model suggest a care
the forests since 1965. Itis possible that large-scale log- set of landscape-level characteristics has a consider-
ging occurred concurrently with household fuelwood able influence on the spatial distribution of househola:
collection from 1965 until 1975 or later. While timber activities. 823
activities continued after 1975, researchers did notnote  HALIM also provided a means to examine the rolex
any large-scale commercial logging in the reserve from of household characteristics on possible future impacts
1983 to the 1990s. Forest loss after 1975 until 1997 was to giant panda habitat. Households were present in the
likely due to a combination of fuelwood collection and reserve prior to the establishment of the current majer
fine-scale timber activities, and exacerbated by already transportation routes. New roads and the introductiesa
low-stand volumes from previous large-scale activity. of mechanized transportation have likely led to growths
As these forests are increasingly lost, fuelwood activi- in agricultural activity along these routes and increased
ties are moving to higher elevation forests with increas- access to forests near roads away from householdss:in
ing losses of core habitat. addition, as the reserve is situated in a mountainos
In addition, most decisions such as consumption area, topography plays a significant role in shaping tke
level, propensity to use alternative energy sources, em-spatial distribution of household activities. Farming ress.
igration rates, and new household formations are made quires relatively flat land and easy access to transporta-
at the household-level and are not explicitly modeled tion. In comparison, fuelwood collection is less depenss
in this study. Increasingly complex models can be de- dentonthe quality of collection sites than the cost factes
veloped within the framework and the influence of ofthe distancetoroads, the slope, elevation change, ard
household-level socio-economic information is being overall accessibility of the location of collection sitesss
examined. In addition, other economic and behavioral  Also, considerable changes in fuelwood consumpe
drivers can be incorporated. However, using landscape-tion and/or household creation rates are required 4o
level household factors linked to the landscape already maintain the current area of forest. While an increasein
provided considerable insight into human impacts and housing development itself led to only small decreases
potential mitigation strategies. The model provided in- in forest area, even limited fuelwood consumption rez.
sightinto the historical trends and ecological conditions sulted in relatively large habitat losses. As most news
ofthe reserve, the driving factors of land-cover change, households are being constructed on previously clearzd
the potential consequences of household alterations ofland, the placement of new households is not likeky,
land-cover on panda habitat, the spatial arrangement ofto directly cause further loss of forest. However, eves
these impacts, and the intricate relationships betweensmall amounts of fuelwood required for the large numas
households and landscapes. The trend toward incorpo-ber of households already in the reserve has a greater
rating household-level data into models may provide impact on forest cover. These results are similar to esr
more detailed information of these systems, but the ne- timates as measured lhyu et al. (1999)who showed s
cessity of such data to practically model household im- that relatively high rates of emigration were necessasy
pacts at the landscape level should be considered. to restore habitat and suggested that most efforts shoshd
Using landscape-level data, the model was able to focus on reducing fuelwood collection and providingss
predict household activities relatively accurately and alternative energy sources for the current householgds
parsimoniously. The placement of hew households is while providing viable means and incentives to encouss
explained by only four factors: distance to roads; prox- age emigration. 858
imity to other households; slope; and elevation. Using  HALIM provides a basic framework that has pracsss
only these four factors; however, the model accurately tical application for human-dominated or -influenceeko
predicts household creation nearly 90% of the time landscapes. The model incorporates households di-
within 3 cells of the measured distribution of house- rectly into landscapes alongside naturally occurring dys
holds. Fuelwood collection also is only based on a few namics and examines the influences of the landscapes
landscape variables: distance to roads, previous fuel-on household activities. In addition, the method used
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Sub-model probability functions and description of parameters and factors

Sub-model Parameter

Factors

Household if): P(hjab,t, p)
P(s)P(e)P(a)

Transportation
®): P(hit) =
clamp(1—
cost/max)

Proximity to
existing
householdsy):
P(hip) = P@)
Fuelwood f): P(f|a, d, p) Availability (a):
P(fla) = P(v)

Local abiotic factors (ab)y(hjab) =

(SeeAppendix B

Cost = distancex impedance

Distance = horizontal + vertical
distance

Impedance #(slope)

Max = 2000 m (maximum house-
hold distance)

Distance factord):
{1.0 d <90 m)}
{0.1 d < 200 m);
{0.01 @ > 2000 m}
Volume ):
{1(v>0nP)}
{0(v=3m)}
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Appendix A Continued
Sub-model Parameter Factors
Cost function Cost = distancex impedance
from hou.seho.ld Distance = horizontal + vertical distance
to collection site:
P(f|d) = clamp(L Impedance #(slope, road)
— cost/max) Max = 9000 m (maximum fuelwood col-
lection distance)
Proximity to Distance factord):
previous - {1.0 d < 90 m)}
collection site p)
{0.1 d>90m)}
Forest coverP(c|g, r) Growth @): Volume ):
P(glv) = P(v) {1 (v< maximum, nd)}
{0 (v=maximum, ni)}
Cut age: normal temporal Rdut age,
10.0, 2.0)
Re-establishment Elevation €):
(r): P(r|a) = P(cut . | :
ageP(©P() {1 (e < max species elevatiofy)
{0 (e> max species elevatioh)
Proximity (p):
{1 (p < 1/2 max species re-establishment
distance);
{0.5 (p < 1 max species re-establishment
distance);
{0.1 (p > 1 max species re-establishment
distance)
Habitat Suitability Slope, elevation, aspect, and forest cover
Appendix B 2500)}{0.08 (2250 <e < 2500){0.82 (1750 <€ < o
2250)}{100 (e < 1750)} 913

Empirically derived probabilities of household
location from abiotic factorsSub-modelParameter-
FactorsLocal abiotic factor§(h|ab) = P(s)P(e)P(a)- References
[5,0]Slope §): P(abjs) = P(s){0.0 (s> 50°)}{0.09 6
> 40°)}{0.23 6 > 30°)}{0.63 & > 20°)}{0.86 & > An, L., Liu, J., Ouyang, Z., Linderman, M., Zhou, S., Zhang, H.gs

914

100)}{1.0 < 100)}[0,1-3][7,0]Aspect 8), P(aba) 2001. Simulating demographics and socioeconomic process as
- P(a){0.14 @ > 3150)}{0.24 @ > 270’)}{0.26 @ household level and their impacts on giant panda habitats. Ecak
> 2250)}{0 35 @ > 180’)}{1 0@> 1353)}{0 56 Modell. 140 (1-2), 31-49. 918

’ : ' An, L., Lupi, F., Liu, J., Linderman, M., Huang, J., 2002. Modelinge1e
(a > 903)}{0-30 @ > 450)}{0-14 @ = 450)}[011' the choice to switch from fuelwood to electricity: implications forszo
3][3,0]Elevation €), P(abe) = P(e){0.00 € > giant panda habitat conservation. Ecol. Econ. 42 (3), 445-45%21
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