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Modeling the spatio-temporal dynamics and interactions of
households, landscapes, and giant panda habitat
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Abstract10

Human modification of land-cover has been a leading cause of floral and faunal species extirpation and loss of local and global
biodiversity. As natural areas are impacted, habitat and populations can become fragmented and isolated. This is particularly
evident in the mountainous areas of southwestern China that support the remaining populations of giant pandas (Ailuropoda
melanoleuca). Giant panda populations have been restricted to remnants of habitat from extensive past land use and land-cover
change. Households are a basic socio-economic unit that continues to impact the remaining habitat through activities such as
fuelwood consumption and new household creation. Therefore, we developed a spatio-temporal model of human activities and
their impacts by directly integrating households into the landscape. The integrated model allows us to examine the landscape
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Dfactors influencing the spatial distribution of household activities and household impacts on habitat. As an example ap
we modeled household activities in a giant panda reserve in China and examined the spatio-temporal dynamics of h
the landscape, and their mutual interactions. Human impacts are projected to result in the loss of up to 16% of all exist
within the reserve over the next 30 years. In addition, we found that accessibility largely controls the spatial distrib
household activities and considerable changes in management and household activities will be required to maintain
level of habitat within the reserve.
© 2004 Published by Elsevier B.V.
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1. Introduction

Appropriation of natural areas through urban
agricultural expansion has drastically altered muc
the land surface (Vitousek et al., 1997; Rutledge
al., 2001). Modification of habitat through less i
tense land use such as fuelwood collection has als
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sulted in drastic changes in natural systems (Liu et al.,7

2001). These changes have enormous implications for8

ecosystem processes, biodiversity, and species persis-9

tence (Ceballos and Ehrlich, 2002). This is particularly10

relevant for the conservation of the giant panda (Ail-11

uropodamelanoleuca). Habitat destruction and poach-12

ing have reduced the wild population to approximately13

1000 pandas (Schaller et al., 1985). Many studies have14

been conducted on panda biology and behavior (e.g.15

Schaller et al., 1985). Most of the studies are empiri-16

cal or field based. There have been also a number of17

modeling studies, which have simulated panda pop-18

ulation dynamics (Zhou and Pan, 1997), panda rela-19

tionships to bamboo dynamics (Reid et al., 1989; Wu20

et al., 1996; Carter et al., 1999), and household prefer-21

ences and characteristics related to panda habitat (An et22

al., 2001, 2002). However, few studies have examined23

the factors influencing the spatio-temporal dynamics24

of households, their impacts on giant panda habitat,25

and their mutual interactions (Liu et al., 1999). To bet-26

ter understand household impacts on giant panda habi-27

tat, we developed a model in which the interactions28

between households, the landscape, and giant panda29

habitat could be studied and based on the analyses pro-30

vided practical information for conservation and man-31

agement planning.32

Much of human land-cover change is carried out at33

the household level as households are basic decision34

and consumption units (Liu et al., 2003). The rapid35

increase in the number of households increases the de-36
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t sed54

models is often difficult given the complexity of the 55

models and human–environment systems (Couclelis, 56

2001). Cellular models, discreet in time and space, al-57

low for simplified modeling relationships and provide58

a structured environment in which various interactions59

and levels of detail can be studied (Benenson, 1998).60

The overall goal of the model, Household And Land-61

scape Integration Model (HALIM) was to develop 62

a generalized modeling approach in which spatio-63

temporal household processes could be integrated into64

realistic landscapes. For this study, we used a generic65

spatially explicit cellular model to examine the interac-66

tions of households and panda habitat through their mu-67

tual relationships with the landscape. Using a generic68

cellular framework facilitated the use of detailed digital69

data to accurately describe the landscape and house-70

hold characteristics while providing a means to inte-71

grate inherently different natural and household pro-72

cesses. Furthermore, this flexibility provides a practi-73

cal and accessible framework in which varying aspects74

and complexity of socio-economic and natural systems75

and their interactions can be integrated. 76

As a preliminary study, we used HALIM to evaluate77

the spatio-temporal effects of landscape-level house-78

hold activities on giant panda habitat in southwest-79

ern China by integrating households, forest cover, and80

wildlife habitat through their mutual relationships with 81

the landscape. This allowed us to examine the individ-82

ual spatio-temporal dynamics and the various interac-83

tions between the landscape, household activities, and84
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and for more resources (Liu et al., 2003). Coupling
ousehold activities with natural processes is there
ssential to accurately model human impacts on na
ystems, to increase our understanding of human
ctions with landscapes, and to provide viable opt

or mitigating future impacts. Various approaches
odeling spatially explicit human activities and th

mpacts on natural systems have been develope
luding statistical techniques (Mertens and Lambin
997), agent-based models (Berger, 2001; An et
ubmitted for publication), and cellular approac
Baltzer et al., 1998). Statistical models have prov
etailed information of the spatial dynamics of s

ems, but are often not conducive to generic fra
orks (Lambin, 1994). More complex agent-based a
roaches allow increasingly detailed human inte

ions with each other and the environment in wh
hey live. However, building descriptive agent-ba
E
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ildlife habitat. Our specific aims of this study we
o examine the influence of landscape-level house
haracteristics on the quantity and spatial distribu
f panda habitat and to determine the landscape

ors influencing these household activities. Using th
esults, we examined possible consequences of
us policy scenarios, provided suggestions to miti
amage to the remaining panda habitat, and iden

mportant landscape, household, and habitat inte
ions for future modeling efforts.

. Methods

.1. Study area

Our field study was conducted in the Wolong N
ure Reserve in southwestern China (Fig. 1), located be
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Fig. 1. Wolong Nature Reserve lies in the Qionglai Mountains between the Tibetan plateau and Sichuan basin.

tween 102◦52′ and 103◦24′E and 30◦45′ and 31◦25′N.99

Wolong is one of the largest reserves (covering ap-100

proximately 2,00,000 ha) dedicated to giant panda con-101

servation and is estimated to contain about 10% of102

the remaining wild panda population (Zhang et al.,103

1997). Approximately 40% of the reserve is currently104

forested. Elevations range 1200–6525 m creating sev-105

eral climatic zones and consequently high biological106

diversity. The distribution of overstory vegetation in107

the reserve is related to the elevation.108

Most forests in the reserve were logged (either clear109

cut or selectively cut) from 1916 until the reserve was110

established in 1975, reaching peak intensity between111

1961 and 1975 (Schaller et al., 1985). Commercial log-112

ging typically resulted in relatively large clearcuts dis-113

tributed throughout the reserve. Logging has been of-114

ficially banned in the reserve since 1975; however, to115

varying degrees illicit logging does continue (M. Lin-116

derman, personal observation). Other human activities117

have also been a major contribution to forest loss and,118

consequently, to the spatial distribution of habitat (Liu 119

et al., 1999, 2001). 120

In 2001, approximately 4440 local residents in about121

1000 households resided within the reserve. The ma-122

jority of these residents are farmers with the primary123

economic activities consisting of farming maize and124

vegetables, raising livestock such as pigs and yaks, and125

collecting wild herbs. A household usually relies on fu-126

elwood for heating, cooking, and livestock feed prepa-127

ration (An et al., 2001). Selective logging for household128

fuelwood collection typically changes the species com-129

position in the overstory and reduces canopy cover until130
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all overstory vegetation is removed. Since 1974, immi-131

gration and new household creation have largely been132

dictated by local policy with immigration restricted by133

marriage and new household creation limited or inad-134

vertently encouraged through various policies. House-135

holds have traditionally focused on subsistence agri-136

culture, but increasing access to markets has provided137

some cash crop opportunities.138

2.2. Data and model parameterization139

Several sources of data were used as model input or140

used to parameterize and validate the model. Satellite141

data and topographic maps were resampled to a pixel142

size corresponding to the landscape grid and used to de-143

scribe the abiotic features and the distribution of house-144

hold activities and vegetation throughout the reserve.145

Socio-economic and demographic data were collected146

from local government agencies and our household sur-147

veys conducted from 1998 to 2001 (An et al., 2001)148

to determine fuelwood collection, household locations,149

and household creation rates. Literature on panda be-150

havior and landscape analyses of habitat was used to pa-151

rameterize the habitat sub-model (Schaller et al., 1985;152

Ouyang et al., 1996; Liu et al., 2001).153

Abiotic information was derived from topographic154

maps of the reserve. A Digital Elevation Model (DEM)155

was interpolated from digitized 100-m contours. Slope156

and aspect data were derived from the DEM. Informa-157

tion on the distribution of forests was obtained from158
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gest that much of the reserve was commercially logged177

from 1916 until 1975. Measurements taken in the late178

1990s indicated much of the lower altitude forests to179

be well below old-growth volumes. Average volumes180

for broadleaf forests below 2600 m were approximately181

80 m3/ha. It is likely that these forests were the first to182

be harvested in the first half of the century and have183

regrown to current volume levels. 184

Based on regrowth data for the broadleaf forests185

in Wolong, we estimated the average volume for186

1965 to be approximately 45 m3/ha. Stand volume 187

for subalpine conifers was on average approximately188

300 m3/ha. Subalpine stand volume was high enough189

such that variations in estimates would not significantly190

influence the model results. Forest regrowth was in-191

cluded in the model to allow for previously logged re-192

gions to regenerate and the addition of biomass and193

regrowth in selectively logged cells. Separate regrowth194

models were developed for each forest type based on195

species composition, stand age, and altitudinal zone.196

Model parameters were derived from over 30 plots dis-197

tributed throughout the reserve (Liu et al., 1999), and 198

approximation of species regrowth and yield models199

was derived from the data of the Sichuan Department200

of Forestry (Yang and Li, 1992). 201

A household survey was conducted from 1998 to202

2001 and included 220 of the households within the203

reserve (An et al., 2001). Households were queried204

on fuelwood use, fuelwood collection, agricultural ac-205

tivity, household creation, and other associated socio-206
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he classification of four dates (1965, 1974, 1987,
997) when remote sensing data were obtained.
965 data are Corona stereo-pair photographs acq
s part of the Corona photo-reconnaissance sat
roject (USGS Eros Data Center, Sioux Falls, So
akota). The 1974 data are Landsat MSS images

he 1987 and 1997 data are Landsat TM images. T
ount for the spectral and spatial differences betw
he data, each image was visually interpreted into
st and non-forest areas (for classification details
iu et al., 2001).

Uncertainty in the 1965 stand volume of the vari
orest types posed the most difficult parameteriza
roblem. While basic coverage information was av
ble from satellite photographs, data on the ave
olume throughout the reserve were scant. Quantit
nformation dating back nearly 40 years is either d
ult to obtain or non-existent.Schaller et al. (1985)sug-
E
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conomic and demographic information. Additio
ocio-economic and demographic information was
ained from local government records. Census in
ation was obtained from each township within

eserve. Local governments also maintain informa
n land allocated to each household. From the sur
nd census data, it was found that each household

ains on average 0.7 ha of agricultural land. Includ
he area of the physical house, garden area, and
uildings, the typical total area is approximately 0.8
herefore, the scale of the model was chosen to be
90 m (0.81 ha). New households have been add

he reserve at a rather steady number each yea
ween 1965 and 1997. On average, approximate
ew households were created each year.

We measured the location of each house
hrough the use of field measurements or Ikono

resolution satellite imagery. Ikonos imagery
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quired in 2000 by SpaceImaging was georeferenced225

with ground control points measured using a Global226

Positioning System with sub-meter accuracy (Trim-227

ble Pathfinder Pro XRS receiver and Community Base228

Station). We then identified households in the images229

and recorded the location. We used all households cre-230

ated on or before 1965 to create the initial distribution231

of households to correspond to the initial 1965 forest232

cover information.233

Fuelwood use was calculated based on a survey of234

over 50 households and physical measurements of an-235

nual use (An et al., 2001). The volume of wood varied236

between 8 and 30 m3 and averaged 15 m3. A base an-237

nual volume of wood used by each household in the238

model was then 15 m3. We derived preference for fuel-239

wood collection and household creation sites by com-240

paring DEM and slope coverages, and house locations241

and fuelwood sites. Distances between household lo-242

cations to fuelwood collection sites varied from 50 m243

to over 5 km. The average distance for 100 households244

surveyed was approximately 500 m. Households pre-245

ferred to collect fuelwood in flat areas (<20◦ slope)246

and had a decreasing probability relative to elevation.247

Behavioral studies have described panda habitat as248

a function of forest cover, slope, and altitude (Schaller249

et al., 1985; Ouyang et al., 1996; Liu et al., 2001).250

Therefore, we determined habitat suitability using a251

multiplicative combination of the three factors (for-252

est cover, altitude, and slope) available for the 30-253

year time span (Liu et al., 2001). Because non-forested254
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Fig. 2. A conceptual flow schematic diagram of the model.

sub-models and individual modeling aspects of Markov271

chains, cellular automata, percolation models and oth-272

ers according to the process being modeled. 273

HALIM includes four sub-models: fuelwood collec-274

tion, household creation, forest regrowth, and panda275

habitat. The resulting impacts of the distribution of276

household activities are integrated directly into giant277

panda habitat models and allow model predictions to278

be measured in terms of changes to landscape indices279

of panda habitat. The sub-models and their interactions280

are shown inFig. 2. Household activities and forest dy-281

namics are influenced by the abiotic characteristics of282

the landscape. Each of the household activities influ-283

ences the spatial distribution of forest cover. The forest284

regrowth sub-model allows for forest re-establishment285

and annual growth of non-climax forests. Finally, the286

suitability of giant panda habitat is determined from287

forest cover along with abiotic factors (Liu et al., 2001). 288

The landscape was divided into a regular lattice289

composed of 90 m× 90 m grid cells. For this model, the 290

probability of the initiation of most sub-model events291

(e.g. fuelwood collection, household creation, etc.) oc-292
U
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R
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reas are considered unsuitable habitat for the
nt panda, forest/non-forest classifications were m
licative factors of 1 or 0, respectively. Slope and

itude multiplicative factors were proportional to t
bserved use by pandas.

.3. Model description

Our model (HALIM) was developed using SELE
Spatially Explicit Landscape Event Simulator) (Fall
nd Fall, 2001; Fall et al., 2001). SELES is a high

evel programming language that facilitates mode
f the temporal and spatial dynamics of gridded la
capes. SELES also allows the incorporation of
eferenced raster data, the definition of systems
nteract on gridded landscapes, and the tempora
patial dynamics of these systems. SELES provide
exibility to incorporate these various systems thro
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curring at each grid cell was determined by the pixel293

values (data layer values) of the cell and, depending294

on the sub-model, surrounding cells. The number of295

sub-model events is determined by the sub-model pa-296

rameters with the location of the event stochastically297

determined by a relative cell probability (e.g. a cell with298

a probability of 0.5 has twice the probability of the oc-299

currence of a landscape event compared to a cell with300

a 0.25 probability, but does not have a 50% probabil-301

ity of an event occurrence). Depending on the process302

of interest the model also allows for landscape events303

to spread to neighboring cells (e.g. if a cell does not304

contain sufficient fuelwood for the annual collection305

of a household’s fuelwood needs, necessary fuelwood306

collection can take place in a neighboring cell).307

The sub-models are described below along with ex-308

amples of the parameters and probability functions:309

• Fuelwood collection– It was assumed that house-310

hold residents collect fuelwood based on availabil-311

ity, accessibility, and previous fuelwood collection312

activity. Typically, fuelwood is collected around the313

household. As these areas are diminished, foraging314

extends to the neighboring areas characterized by315

easy accessibility (Liu et al., 2001). Many residents316

have been forced to travel several kilometers to col-317

lect annual stocks of fuelwood (An et al., 2001).318

Accessibility is characterized in this model by the319

distance to collection site, slope, and elevation and320

is defined as a cost function relative to the distance321
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ample, past trends have been relatively stable. Poli-339

cies, however, have been shown to affect household340

creation. Therefore, a range of household creation341

rates about the past trend was examined. Each new342

household was presumed to establish its own agri-343

culture land, clearing the forest area or occupying344

previously deforested area. The location of each new345

household was dependant on suitable agriculture346

land and proximity to transportation routes and other347

households. The household sub-model was, there-348

fore, determined by three parameters: distance–cost349

factor to transportation, abiotic factors, and proxim-350

ity to other households. The preciseX andY coor- 351

dinates of the actual residence were not included in352

this model. Rather, households, including the phys-353

ical residence, agriculture land, garden area, and354

various other buildings, were presumed to occupy355

cells of the landscape. Suitable agriculture areas are356

based on abiotic factors: slope, aspect, and eleva-357

tion. While agriculture activity occurs on slopes up358

to 40◦, low-slope areas are preferred. Preference for359

low-elevation areas was also considered. For exam-360

ple, based on survey data probabilities for household361

placement based solely on elevation were measured362

as:
363

P(household|e) =

{0.00 (e > 2500)}
{0.08 (2250< e ≤ 2500)}
{0.82 (1750< e ≤ 2250)}
{1.00 (e ≤ 1750)}
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to roads and main paths and topographic variab
(i.e. slope and elevation difference along the p
to the cell location). The probability function wa
linearly decreasing function of increasing cost:

P(fuelwood|cost)=
(

1 −
(

Cost

Maximum cost

))

Forest cover and average yield per hectare d
mined availability. Households are also more lik
to return to the same cell location, if sufficient for
volume exists, or neighboring cells of previous fu
wood extraction. Therefore, a higher probability
collection was assigned to cells previously harve
and to neighboring cells. The overall probability
fuelwood extraction for each forested cell is the
multiplicative combination of these factors.
Household creation– The number of new hous
holds each year was predetermined based on
tential policy and socio-economic impacts. For
E
D
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In areas of higher elevation (e), preference was give
to slopes facing south to maximize sunlight. Hou
holds were also more likely to develop land adjac
to previously established houses and within s
distances (typically less than 2 km) of major tra
portation routes.
Forest cover– Four forest categories (non-fore
evergreen broadleaf, deciduous broadleaf, and
alpine conifer) were identified throughout the
serve based on remote sensing, elevation, and sp
distribution (Schaller et al., 1985). Initial stand vol-
ume was estimated for each elevation zone b
on approximate time and intensity of commer
logging activity. Each forested cell was assume
increase in biomass and each non-forested pixe
a probability to re-establish based on proximity
other forest pixels and time since deforestation.
growth models were derived for each of the p
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dominant species within each elevation zone from383

published and empirical data (Yang and Li, 1992).384

Regrowth is calculated based on species and approx-385

imations of logistic regrowth curves of total volume.386

An example of the calculation is given below:387

V (t, Van, Vmax) = {0.0 (t < tlag)}
{V + Van(t>tlag andV<Vmax)}

388

where t is the time since harvest,tlag is a nor-389

mally distributed lag time since harvest until re-390

establishment,Van is the annual volume increment,391

and Vmax is the maximum volume according to392

species type. Upper asymptotic limits on volume393

were controlled by stand maximum values rather394

than time due to concurrent fuelwood collection.395

• Habitat suitability– The final habitat classification396

was a categorized suitability measure of four classes397

termed highly suitable, suitable, marginally suitable,398

and unsuitable (Liu et al., 2001). The impacts from399

household activities are reflected in the habitat suit-400

ability model as impacts from fuelwood activity and401

agriculture development. Measures of panda habitat402

quantity and suitability allow analysis of the tempo-403

ral and spatial dynamics of, the influence of house-404

hold characteristics on, and future giant panda habi-405

tat.406

Landscape events (e.g. fuelwood collection, forest407

regrowth) occurred on an annual time frame. The first408

landscape event in the model each year is the estab-409

lishment of new households and associated agricultural410

d nual411

f re-412

g ility413
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T for422
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v new425

h rac-426

teristics and the relative influence of each individual427

parameter on the model output. Validation was done428

through comparison of model output over this time to429

measured habitat and household distributions. 430

We conducted sensitivity analyses for the household431

and fuelwood collection sub-models. We examined the432

sensitivity of the household sub-model to each of its433

components (abiotic, proximity, and cost function) by434

comparing scenarios excluding components or varying435

parameter estimations and the measured household dis-436

tribution in 1997. This was done because we wanted to437

show the overall influence each function had on the438

selection of new households and because some func-439

tions could not be varied systematically (e.g. abiotic in-440

fluences were based on conditional probabilities). We441

measured accuracy and calculated landscape metrics442

based on the average of 20 simulations. We also con-443

ducted systematic analyses of sensitivity of individual444

parameters for the fuelwood sub-model, such as the445

propensity to return to previous fuelwood collection446

sites and distance to fuelwood collection sites. Since447

parameterization of stand volumes for broadleaf forests448

below 2600 m contained relatively large uncertainty,449

several average stand volumes for the broadleaf forests450

were tested, including 30, 45, 60, 75, and 90 m3/ha. 451

The accuracy of the predicted distribution of house-452

holds was measured through comparison of predicted453

locations of households in 1997 to measured locations.454

Precise cell-by-cell prediction, however, was not the455

intention of this model. Foremost, the model is stochas-456
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evelopment. Each household then collects its an
uelwood volume. At the end of the year, forest
rowth occurs for each forested cell and the suitab
f panda habitat is updated.

.4. Model validation and sensitivity analyses

Model validation and sensitivity analyses w
ased on simulations started in 1965 with the in
istribution of forest based on the classification

orest/non-forest categories from the 1965 Corona
ographs. The original distribution of households
ased on all households established prior to or in 1
he sensitivity and validation simulations were run
2 years to correspond to the latest remote sen
ata available (1997). We measured sensitivity thro
arying individual parameters such as the rate of
ousehold creation, fuelwood use, and forest cha
E
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ic. In addition, households do not occupy all poten
gricultural areas within the reserve. This leads to
as with similar probabilities available for househ
stablishment. However, as the spatial arrangeme
ouseholds may have an impact on habitat, particu
rucial secondary habitat, we also examined the pe
f predicted households falling in close proximity
, and 3 cells) of measured households.

Impacts from fuelwood collection were measu
y comparison of predicted and measured impac

orest cover and habitat. Again, we did not expect
ct correspondence between the model prediction

he measured distributions. Collections sites are,
egree, stochastically chosen both by the model
s with households, not all potential fuelwood sites
hosen) and households (i.e. some degree of h
old decisions is unpredictable regardless of infor

ion available). In addition, the natural variability of t
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forests was not fully captured in the visual classifica-475

tions (i.e. the visual interpretation of forest distribution476

did not include all forest gaps and edge complexity at477

a 90-m resolution) and illicit logging activities not in-478

cluded in the model make a direct accuracy assessment479

difficult.480

To minimize the effect of natural and other influ-481

ences on the accuracy assessments, we limited anal-482

yses to regions within 5 km of the current household483

distribution. This distance corresponds to the approxi-484

mate maximum distance residents travel to collect fu-485

elwood. Within the 5 km buffers, we used three valida-486

tion methods: visual appraisals of multitemporal data;487

direct comparison to a supervised classification; and a488

comparison between landscape indices. We compared489

predicted fuelwood impacts on forest cover to visual490

classifications of forest cover from 1974 to 1997 satel-491

lite imagery (Liu et al., 2001). We compared measure-492

ments of the distribution of households and digital clas-493

sifications of forest cover as measured in 1997 to final494

outputs from the model. Digital classification of the495

1997 forest cover was possible with extensive ground496

sample data and provided a more detailed snapshot of497

the distribution of forest cover. Accuracy is reported498

as the percentage of predicted cells that correspond to499

measured cells (e.g. predicted non-forest versus mea-500

sured non-forest cells). This ignores possible omission501

errors and was used because of the difficulty in distin-502

guishing natural variability and human impacts (e.g. il-503

licit logging) on forest cover from household activities504

e ar-505

i over506

c sion507

a508

the509

q and-510

s plex-511

i -512

b bil-513

i the514

m cape515

( do516

n ured517

f cape518

i hold519

d otal520

n rime-521

t522

ing patch compactness, and connectivity between patch523

centroids (Forman and Godron, 1986) that describes 524

clustering of patches. 525

2.5. Household impacts 526

To examine the relative influences of different527

household conditions on the landscape, a variety of528

scenarios were run from 1965 until 2030. Each sce-529

nario was started using 1965 land-cover and house-530

hold data. From 1965 to 1997, we based the model531

parameters on measured values. We then varied model532

parameters for 1997–2030 to examine the impacts of533

possible changes. These scenarios represent situations534

where new policies were introduced after 1997. Param-535

eters we examined included fuelwood consumption per536

household and the household growth rate (or immi-537

gration/emigration rate). The length of the simulations538

was chosen based on the reliability of the model over539

the previous 32 years and to permit sufficient time to540

compare various scenarios and predict future impacts.541

We compared model scenarios based on impacts to gi-542

ant panda habitat as deforestation from fuelwood and543

household construction removed habitat. 544

These scenarios included changes in fuelwood545

consumption levels of 30, 15, 10, 5, and 0 m3/ 546

year/household and household growth rates of 36, 24,547

12, 0,−12, and−24 new households created or re-548

moved each year after 1997, as well as combinations of549

these parameters. We chose these levels to reflect possi-550

b new551

p s, re-552

s city.553

F nd554

r ub-555

s ning556

f re-557

s on.558

E for559

m ok-560

i en-561

e ture562

( on563

o duce564

f mi-565

g ten-566

t ver,567

t lts to568
U
N

C
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R
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E
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ven within 5 km of the households. Visual comp
sons of model predictions and measured forest c
hange are shown for comparison between commis
nd omission errors.

In addition, comparisons were made between
uantity of forest area and disturbed areas and l
cape metrics such as patch size, shape, and com
ty. Given the difficulty in distinguishing between tim
er logging, fuelwood collection, and natural varia

ty in forest cover, simple accuracy comparisons of
odel predictions relative to the measured lands

particularly those from the detailed classification)
ot provide a complete picture. The impacts meas

rom simulations were also reported as the lands
ndices relative to the impact of interest (e.g. house
istribution and forest cover). Indices used include t
umber of patches, mean patch size, corrected pe

er to area (p/a) ratio (Baker and Cai, 1992) describ-
E
D
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le future household characteristics resulting from
olicies and management efforts such as subsidie
trictions, and/or increased accessibility to electri
or example, efforts to limit fuelwood collection a
eclaim agriculture land were initiated in 2000. S
idies have been offered in exchange for maintai
orests. The administration has also attempted to
trict the location and quantity of fuelwood collecti
lectricity prices are also currently unaffordable
ost local farmers, particularly for heating and co

ng purposes. Affordable and consistent alternative
rgy sources may influence fuelwood use in the fu
An et al., 2002). Each of these or the combinati
f these changes may provide an incentive to re

uelwood use. In addition, efforts to encourage e
ration out of the reserve are being instituted po

ially decreasing the number of households. Howe
here is an increasing preference by younger adu
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establish new households, and in response to subsidy569

opportunities, new households have actually recently570

increased at much higher rates than in the past. There-571

fore, to reflect the possible range of values, we chose572

fuelwood consumption levels ranging from the current573

maximum known household consumption (double the574

current average) to no fuelwood use. We also exam-575

ined household creation rates varying from a 50% in-576

crease in household establishment to a net emigration577

of households to reflect policy influences on household578

creation over the next 30 years.579

3. Results580

3.1. Model validation and sensitivity581

To examine the overall influence of the household582

sub-model parameters (e.g. topography, distance to583

transportation, and proximity to other households), sev-584

eral variations of the household sub-model were com-585

pared. We could not do a typical sensitivity test for586

this sub-model as some of the parameters were em-587

pirical look-up tables. Therefore, to examine the in-588

fluence of each parameter, model outputs were com-589

pared for several combinations of sub-model param-590

eters. For example, the household sub-model includ-591

ing all three hypothesized parameters (abiotic, dis-592

tance, and proximity) (Fig. 3a) resulted in approxi-593

mately the same number of patches and similarp/a594

r l also595

l htly596

h dis-597

t e-598

s599

a re-600

g ex-601

t to-602

p tes603

y604

T s the605

m606

w607

o ing608

o ize609

a610

r olds611

(612

Accuracy in terms of predicted household locations613

agreeing with measured cell locations of household dis-614

tribution varied from 20 to 27% (Table 2). Incorpo- 615

rating all of the parameters hypothesized to influence616

household placement resulted in an accuracy of 27, 68,617

and 82, and 88% for predicted households within 0,618

1, 2, and 3 cells from measured households (Table 2). 619

This suggests that the model was predicting households620

essentially within the same areas as those measured621

to also contain households. Not including the distance622

function yielded the lowest accuracy of 63% for pre-623

dicted households within 3 cells of measured house-624

holds. The accuracy was 80% when a preference to625

create new households next to existing households was626

not included. Excluding the selection based on abiotic627

factors (i.e. slope and elevation) achieved an accuracy628

of 81% within 3 cells. 629

Sensitivity analyses conducted for each of the fu-630

elwood parameters showed influences from variations631

in the distance and proximity factors (Table 3). Relax- 632

ing the tendency for households to collect fuelwood633

from previously cleared areas led to more fragmenta-634

tion and is reflected in the landscape metrics. Variation635

of the proximity factor three times more likely to re-636

turn to previous sites resulted in 35% fewer patches637

and 54% larger patch sizes. Reducing the proximity638

factor three times resulted and 52% more patches and639

34% smaller patch size (Table 3). In addition, perimeter 640

and connectivity indices show increasing clustering as641

the proximity factor is increased. Varying the distance642

c ing643

t dis-644

p is is645

s aller646

p n- 647

n ar648

a patch649
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P r var-651

i rease652
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ol-654
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s sed659

p vol-660
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atio as the measured households. This sub-mode
ed to a 44% larger mean patch size, and slig
igher connectivity compared to the measured

ribution (Table 1). Excluding abiotic preferences r
ulted in 71% more patches of households (Table 1)
nd caused some households to be placed in
ions of atypical topographic relief (e.g. areas of

reme slope) (Fig. 3b). Excluding the distance and
ographic variation from main transportation rou
ielded a wide distribution of households (Fig. 3c).
he number of patches was more than three time
easured distribution. Mean patch size andp/a ratio
ere both considerably lower (Table 1). And, the lack
f a proximity factor resulted in decreased clump
f households (low connectivity), smaller patch s
nd an increase in the number of patches (Table 1)
elative to the measured distribution of househ
Fig. 3d).
E
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ost factor by 20% resulted in similar results. Eas
he influence of the distance factor generated more
ersed impacts occurring in smaller patches. Th
een in the patch characteristics with more and sm
atches and decreasedp/a ratios and diminished co
ectivity (Table 3). Increased probability of using ne
reas conversely increased patch size, decreased
umber, and increased connectivity between pat
atch size varied by 17.9–33.7% and patch numbe

ed by 24.1 and 20.5% for a 20% decrease and inc
n the cost factor, respectively (Table 3).

Trends in deforestation relative to initial stand v
me were decreasing area of impact and reduced
entation since more volume was available in

erred collection areas (Table 3). While the outputs us
ng each of the five initial volumes shown inFig. 5do
eemingly conform largely to expectations, increa
eripheral impacts occur at both increased initial
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Fig. 3. Comparisons of the influence of the three multiplicative factors contained within the household sub-model. Accuracy of each scenario
is shown relative to the measured households with corresponding predicted households and measured households shown in black, incorrectly
predicted households are shown in dark gray, actual households where no households were predicted are shown in white: (a) shows the predicted
household distribution in 1997 including all factors relative to the actual distribution; (b) is without abiotic preferences; (c) without cost factors;
and (d) without proximity influences.

Table 1
Landscape characteristics of the measured households in 1997 (Households 1997) compared to model scenarios

Number of patches Mean patch size (ha) p/a ratio Connectivity

Households 1997 94.00 40931 1.49 0.046
All parameters 110.35 59101 1.50 0.053
No proximity factor 261.00 24905 1.41 0.015
No abiotic factor 161.90 40229 1.46 0.034
No cost factor 280.60 23152 1.29 0.009

Values are averages of 20 simulations for each scenario.
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Table 2
Accuracy of the predicted household locations for the model scenarios relative to the household locations in 1997

Cells

0a 1b 2b 3b

No cost factor 20.6± 1.3c 47.3± 2.4 57.1± 2.6 63.0± 2.4
No proximity factor 21.2± 1.1 54.3± 1.7 70.6± 1.3 79.8± 1.4
No abiotic factor 22.4± 1.4 55.8± 2.4 71.8± 2.0 81.2± 2.3
All parameters 27.4± 0.7 67.9± 1.5 82.5± 1.9 88.3± 1.9

a Accuracy as measured as predicted household locations occurring at measured household locations (titled 0).
b Predicted locations within 1, 2, and 3 cells (labeled 1, 2, and 3, respectively) of measured household locations.
c Uncertainties represent one standard error of the accuracies of the 20 simulations conducted for each scenario.

umes and decreased volumes. Landscape metrics and661

overall model accuracy also follow this trend (Table 3).662

The lowest number of patches occurred when the ini-663

tial forest stand volumes was 45 m3/ha. Decreasing664

stand volume caused larger overall habitat loss, par-665

ticularly the core area nearest to households; however,666

smaller peripheral impacts were more common. As ini-667

tial stand volume was increased, the overall impact was668

diminished, however small pockets of impact emerged669

where more continuous impacts previously existed.670

These trends are clearly shown in the decreasing patch671

perimeter and mean patch size.672

Fig. 4shows a multitemporal comparison of the pre-673

dicted 32-year simulation of household activity and the674

measured forest cover within 5 km of all households.675

There appears to be a good correspondence between676

the model outputs and measured forest distribution.677

The basic trends in forest cover are comparable be-678

tween measured and predicted distribution of forest679

Table 3
Sensitivity of individual factors used within the fuelwood sub-model

Factor Parameter Number of patches Mean patch size (ha) p/a ratio Connectivity index

Proximity∗ 0.33 125.2 75.8 1.668 0.719
1 192.2 49.2 1.606 0.336
3 291.5 32.7 1.538 0.170

Distance∗ 0.8 145.8 65.8 1.630 0.546
1 192.2 49.2 1.606 0.336
1.2 231.6 40.4 1.587 0.277

I 3

V
licative

cover, though some differences from natural and other680

activities are apparent. In addition, the model was suc-681

cessful in capturing the basic trend in the distribution of682

households based only on the initial 1965 distribution683

of households. 684

Accuracy and sensitivity analyses were done to de-685

termine the overall validity of the model and the in-686

fluence of individual parameters. The accuracy of pre-687

dicted impact sites relative to measured impact also688

reflects more concentrated impacts as initial volume is689

increased (Fig. 5). As fuelwood activity is focused on 690

core areas near households, model accuracy increases.691

At an initial stand volume of 30 m3/ha, the overall pre- 692

diction accuracy is approximately 55%. As the vol-693

ume increased to 90 m3/ha, model accuracy increased694

to 64% (Table 3). The increase in accuracy is largely a695

result of smaller areas being affected only near house-696

holds and decreased influence of stochasticity in choos-697

ing distant fuelwood sites.
U
N

C
O

R
Rnitial volume (m /ha) 30 211.4
45 192.2
60 258.7
75 265.9
90 246.3

alues in bold represent hypothesized values.
∗ The proximity and distance coefficients are unitless multip
ECOMOD 3787 1–1

51.9 1.567 0.365
49.2 1.606 0.336
33.6 1.540 0.212
30.3 1.502 0.161
30.5 1.502 0.167

factors.
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Fig. 4. Comparisons between visual classifications of satellite data from 1965, 1974, 1987, and 1997 and predicted forest cover due to household
activities of corresponding years.
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Fig. 5. Differences between predicted forest cover due to fuelwood collection compared to the digital classification at various starting volumes
for low-elevation forests. Forest/forest and non-forest/non-forest categories represent agreement between predicted and measured forested and
non-forested cells, respectively. The non-forest/forest category represents areas where the model predicted non-forest and the digital classification
was forest. Forest/non-forest is the opposite case: (a–e) with starting volumes of 30, 45, 60, 75, and 90 m3/ha, respectively.
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Table 4
The influence of household characteristics on habitat over 65 years
(1965–2030) relative to a baseline scenario of 0 new households per
year and 0 m3/year of fuelwood consumed after 1997

Household growth
rate (households
per year)

Fuelwood
consumption
(m3/year)

Change
in total
habitat
(%)

Change in habitat
< 2600 m of
elevation (%)

0 0 0.00 0.00
24 0 −0.06 −0.18
24 5 −1.34 −3.79
24 10 −2.61 −7.36
24 15 −3.32 −9.33
24 30 −6.06 −15.84

−24 15 −1.84 −5.17
−12 15 −2.12 −6.16

0 15 −2.77 −7.74
12 15 −3.21 −8.99
24 15 −3.32 −9.33
36 15 −4.31 −11.74
12 10 −2.26 −6.41

3.2. Household impacts698

Projected household impacts on panda habitat are699

shown inTable 4. Current levels of household creation700

and fuelwood consumption caused nearly an additional701

10% habitat loss below 2600 m of elevation compared702

to conditions in which no additional households and703

fuelwood collection occurred after 1997. Across the704

entire reserve, an additional 3% of habitat was lost705

compared to no new household impacts after 1997.706

Levels of household fuelwood consumption were sys-707

tematically varied from 0 to 30 m3/year to examine708

the influence of fuelwood consumption on habitat loss.709

An increase in fuelwood consumption after 1997 to710

30 m3/year would result in a nearly 70% increase in loss711

of habitat from the current level of 15 m3/year. Over712

6% of the reserve and nearly 16% of the low-elevation713

forest would be further impacted by doubling the con-714

sumption of fuelwood. Reducing fuelwood consump-715

tion by two-thirds reduced the loss of habitat below716

2600 m of elevation by 59% compared to baseline sce-717

narios. Forest re-establishment will only play a limited718

role over the next 30 years as re-establishment times are719

typically 30–50 years. In the next 30 years, habitat loss720

may largely be dictated by fuelwood consumption and721

increases in volume of current stocks. Therefore, a near722

cessation in fuelwood collection over the next 30 years723

is required to maintain levels of habitat as measured in724

1997. 725

New housing development did not have the same726

influence on the total habitat co-opted by households727

as fuelwood consumption levels did. A 50% increase728

in the number of new household starts resulted in a729

26% increase in low-elevation habitat loss relative to730

baseline scenarios. Cessation of new housing develop-731

ment following 1997 still led to the loss of nearly 3%732

of the entire reserve and 8% of low-elevation habitat733

compared to scenarios with no new households and734

no fuelwood consumption following 1997. And a net735

removal of 24 households per year (the same number736

previously being added per year) only resulted in a 45%737

reduction in habitat loss compared to baseline scenar-738

ios. As seen from a 50% increase in household creation739

with no fuelwood collection, increased population and740

resulting household creation contributed little to habi-741

tat loss because considerable areas around households742

are already cleared of forest cover. Modest reduction743

in both future new housing development and fuelwood744

consumption (12 households per year and 10 m3/year) 745

led to approximately 30% less habitat loss relative to746

current levels of new housing and fuelwood consump-747

tion. 748

4. Conclusions and discussion 749

HALIM was developed to examine the relationship750

o ence751

o pro-752
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t ltane-754

o e fur-755

t tailed756

i h as757
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f households to the landscape, to assess the influ
f the landscape on household activities, and to
ide a practical framework in which the interactions
ween households and the landscape can be simu
usly studied. The study does point out areas wher

her analyses are needed. For example, more de
nformation on the biophysical characteristics suc
otal available biomass, growth rates, and efficienc
he conversion of biomass to fuelwood might contrib
o the model. Except for the Corona photographs
or this study, very little information on the state of
orest in 1965 was available. However, comparing
ections of household creation and fuelwood collec
rom 1965 to a time when there is more detailed in
ation permitted a better estimate of forest condit

n 1965 and provided insight into factors contributin
abitat loss. Comparisons of predicted forest loss
965 to 1997 to measured forest conditions in 1
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for several scenarios of the average starting volume of769

low-elevation forest further suggests that these forests770

were already at relatively low volumes. The lower for-771

est volume potentially magnified household impacts on772

the forests since 1965. It is possible that large-scale log-773

ging occurred concurrently with household fuelwood774

collection from 1965 until 1975 or later. While timber775

activities continued after 1975, researchers did not note776

any large-scale commercial logging in the reserve from777

1983 to the 1990s. Forest loss after 1975 until 1997 was778

likely due to a combination of fuelwood collection and779

fine-scale timber activities, and exacerbated by already780

low-stand volumes from previous large-scale activity.781

As these forests are increasingly lost, fuelwood activi-782

ties are moving to higher elevation forests with increas-783

ing losses of core habitat.784

In addition, most decisions such as consumption785

level, propensity to use alternative energy sources, em-786

igration rates, and new household formations are made787

at the household-level and are not explicitly modeled788

in this study. Increasingly complex models can be de-789

veloped within the framework and the influence of790

household-level socio-economic information is being791

examined. In addition, other economic and behavioral792

drivers can be incorporated. However, using landscape-793

level household factors linked to the landscape already794

provided considerable insight into human impacts and795

potential mitigation strategies. The model provided in-796

sight into the historical trends and ecological conditions797

of the reserve, the driving factors of land-cover change,798

t ns of799

l nt of800

t een801

h orpo-802

r ide803

m ne-804

c im-805

p .806

le to807

p and808

p s is809

e rox-810

i sing811

o tely812

p ime813

w se-814

h few815

l fuel-816

wood collection locations, slope, and elevation. Again,817

the model captures the trend in household reductions818

in forest cover. The simplicity (e.g. four household cre-819

ation factors) and success of the model suggest a core820

set of landscape-level characteristics has a consider-821

able influence on the spatial distribution of household822

activities. 823

HALIM also provided a means to examine the role824

of household characteristics on possible future impacts825

to giant panda habitat. Households were present in the826

reserve prior to the establishment of the current major827

transportation routes. New roads and the introduction828

of mechanized transportation have likely led to growth829

in agricultural activity along these routes and increased830

access to forests near roads away from households. In831

addition, as the reserve is situated in a mountainous832

area, topography plays a significant role in shaping the833

spatial distribution of household activities. Farming re-834

quires relatively flat land and easy access to transporta-835

tion. In comparison, fuelwood collection is less depen-836

dent on the quality of collection sites than the cost factor837

of the distance to roads, the slope, elevation change, and838

overall accessibility of the location of collection sites.839

Also, considerable changes in fuelwood consump-840

tion and/or household creation rates are required to841

maintain the current area of forest. While an increase in842

housing development itself led to only small decreases843

in forest area, even limited fuelwood consumption re-844

sulted in relatively large habitat losses. As most new845

households are being constructed on previously cleared846

l ely847

t ven848
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b eater850
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he potential consequences of household alteratio
and-cover on panda habitat, the spatial arrangeme
hese impacts, and the intricate relationships betw
ouseholds and landscapes. The trend toward inc
ating household-level data into models may prov
ore detailed information of these systems, but the

essity of such data to practically model household
acts at the landscape level should be considered

Using landscape-level data, the model was ab
redict household activities relatively accurately
arsimoniously. The placement of new household
xplained by only four factors: distance to roads; p

mity to other households; slope; and elevation. U
nly these four factors; however, the model accura
redicts household creation nearly 90% of the t
ithin 3 cells of the measured distribution of hou
olds. Fuelwood collection also is only based on a

andscape variables: distance to roads, previous
E
D
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and, the placement of new households is not lik
o directly cause further loss of forest. However, e
mall amounts of fuelwood required for the large n
er of households already in the reserve has a gr

mpact on forest cover. These results are similar to
imates as measured byLiu et al. (1999)who showed
hat relatively high rates of emigration were neces
o restore habitat and suggested that most efforts s
ocus on reducing fuelwood collection and provid
lternative energy sources for the current househ
hile providing viable means and incentives to enc
ge emigration.

HALIM provides a basic framework that has pr
ical application for human-dominated or -influen
andscapes. The model incorporates household
ectly into landscapes alongside naturally occurring
amics and examines the influences of the landsc
n household activities. In addition, the method u
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is flexible enough to allow the integration of additional865

human and landscape components such as the more866

detailed socio-economic information discussed above867

and other natural processes such as household impacts868

on understory bamboo dynamics. This approach pro-869

vides a useful means to better understand and predict870

impacts of households on wildlife habitat and interac-871

tions with the landscape.872
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P(s)P(e)P(a)

Transportation
(t): P(h|t) =
clamp(1−
cost/max)

Proximity to
existing
households (p):
P(h|p) = P(d)

Fuelwood (f): P(f|a, d, p) Availability (a):
P(f|a) = P(v)
U

E
D

Cost = distance× impedance

Distance = horizontal + vertic
distance

Impedance =f(slope)

Max = 2000 m (maximum hous
hold distance)

Distance factor (d):

{1.0 (d < 90 m)}
{0.1 (d < 200 m)}
{0.01 (d > 2000 m)}
Volume (v):

{1 (v > 0 m3)}
{0 (v = 3 m3)}
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Appendix A (Continued)

Sub-model Parameter Factors

Cost function
from household
to collection site:
P(f|d) = clamp(1
− cost/max)

Cost = distance× impedance

Distance = horizontal + vertical distance

Impedance =f(slope, road)

Max = 9000 m (maximum fuelwood col-
lection distance)

Proximity to
previous
collection site (p)

Distance factor (d):

{1.0 (d≤ 90 m)}
{0.1 (d > 90 m)}

Forest cover:P(c|g, r) Growth (g):
P(g|v) = P(v)

Volume (v):

{1 (v < maximum, m3)}
{0 (v = maximum, m3)}

Re-establishment
(r): P(r|a) = P(cut
age)P(e)P(p)

Cut age: normal temporal Pdf(cut age,
10.0, 2.0)

Elevation (e):

{1 (e≤ max species elevation)};

{0 (e> max species elevation)}
Proximity (p):

{1 (p < 1/2 max species re-establishment
distance)};

{0.5 (p < 1 max species re-establishment
distance)};

{0.1 (p > 1 max species re-establishment
distance)}

Habitat Suitability Slope, elevation, aspect, and forest cover
900

Appendix B901

Empirically derived probabilities of household902

location from abiotic factorsSub-modelParameter-903

FactorsLocal abiotic factors,P(h|ab) =P(s)P(e)P(a)-904

[5,0]Slope (s): P(ab|s) = P(s){0.0 (s > 50◦)}{0.09 (s905

> 40◦)}{0.23 (s > 30◦)}{0.63 (s > 20◦)}{0.86 (s >906

10◦)}{1.0 (s ≤ 10◦)}[0,1-3][7,0]Aspect (a), P(ab|a)907

= P(a){0.14 (a > 315◦)}{0.24 (a > 270◦)}{0.26 (a908

> 225◦)}{0.35 (a > 180◦)}{1.0 (a > 135◦)}{0.56909

(a > 90◦)}{0.30 (a > 45◦)}{0.14 (a ≤ 45◦)}[0,1-910

3][3,0]Elevation (e), P(ab|e) = P(e){0.00 (e >911

2500)}{0.08 (2250 <e ≤ 2500)}{0.82 (1750 <e ≤ 912

2250)}{1.00 (e≤ 1750)} 913
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