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Abstract

We present a general method for using doc-
uments produced by a group for which a so-
cial network can be constructed to improve
community detection. We augment bag-of-
words document representations with “com-
munity words” based on the communities as-
signed by a a community detection algorithm,
in counts weighted by the strength of evidence
for community membership; we then run com-
munity detection again on the similarity graph
of the modified documents. We show that
combining the linguistic with network infor-
mation improves significantly on systems us-
ing either kind of information alone.

1 Introduction

Real networks are not random; their edge distribu-
tions reveal high levels of organization, “with high
concentrations of edges within special groups of ver-
tices, and low concentration between these groups.”
(Fortunato, 2010). This clustering property is called
community structure (Girvan and Newman, 2002).
In this paper we target community detection in so-
cial networks, which display hierarchical commu-
nity structure in abundance, exploring ways to refine
the search using linguistic information.

2 Approach

We start with the situation of a group whose mem-
bers produce documents, with some foundation for
inferring social ties among the group members. The
foundation could be co-occurrence on a membership

list, such as those found on Live Journal, participa-
tion in the same mail thread, as on Linux lists, or
it could be hyperlinks between Blogs. The inferred
ties allow us to build a network, and we now have a
network of documents. We will refer to this graph as
the link graph. Anticipating the case study of sci-
ence fiction blogs below, we refer to the document
producers as bloggers, and to the evidence of social
ties as links.

To bring linguistic (or arbitrary) features into play,
we propose to run community discovery algorithms
on a graph that is somewhat different than the link
graph. We define the graph via an NxN similar-
ity matrix SM, where SMij is the similarity of the
feature vector of vertex i to that of vertex j. The
use of a similarity matrix as a basis for clustering
is familiar in a variety of application, for example
in image segmentation, especially connection with
normalized cuts (Von Luxburg, 2007).

The simplest way to combine linguistic and net-
work information in SM would be to start by repre-
senting each document vertex with a classic bag–of-
word vector (1 entry for each vocabulary item) and
add one link feature for every vertex in the graph,
defining the jth link feature for vector i to be 1 if
there is a link between i and j.

There are three problems with combining the in-
formation from words and links in this way. Prob-
lem one is sparsity: Throwing a large set of links
into the feature set adds another diffuse set of sig-
nals in to a very noisy background. Problem two is
signal strength: treating links like other words does
not properly weight link information in an unsuper-
vised learning setting where the goal is community



detection. Finally, there is the problem of relevancy.
Words contain too much information, most of it ir-
relevant to the problem of community detection.

We turn to the last problem first. We approximate
the set of features most likely to yield information
about social ties by using proper names, limited to
names of persons and organizations. The choice of
proper names is motivated both by the fact that they
can be reliably extracted and by anecdotal evidence.
Adamic and Glance (2005) noted distinct patterns of
name dropping in their data for conservative and lib-
eral blogs. Certain names, particularly names of new
organizations and political figuresm showed up and
over and over in each group, and interestingly, these
were often outgroup citations. Thus, for example,
conservative bloggers were more likely to cite the
liberal New York Times than were liberal bloggers.

We address the related problems of sparsity and
signal strength with two strategies:

1. We concentrate the link signals by reducing all
link signals to a single feature: Call this fea-
ture the community word. Thus if initial com-
munity detection discovers 3 communities, one
of 3 community words is added to the bag of
names of each blogsite s.

2. The count c assigned to the community word
for blogsite s is equal either to 1 or to the num-
ber of s’s neighbors in the same community,
whichever is greater. 1

Finally a few words about the community detec-
tion algorithms used in our experiments. We fo-
cus on two algorithms which rank community as-
signments using the modularity of the community-
partition, the algorithms of Blondel et al. (2008)
and Newman (2006). Modularity can be defined
as a sum of edge weights, ignoring edges between
communities; algorithms that are sensitive to edge
weights are particularly attractive, since our ap-
proach seems to work best when the similarity graph
is fairly dense graph (high values of k) with signif-
icant variability in weights. Among several defini-
tions of modularity given in the literature, we choose

1A closely related approach is to weight c by the “commu-
nity centrality” score of site s, as defined for Newman’s algo-
rithm. This approach achieves comparable results, but is not
described in this study.

the definition common to the two algorithms above
(Newman, 2006):

Q =
1

4m

∑
i,j
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Aij −

kikj
2m

]
δ(ci, cj)

where Aij represents the weight of the edge between
vertics i and j; ki is the weighted degree of vertex
i (the sum of the weights of the edges attached to
vertex i), ci, cj are the communities to which ver-
tex i and j are assigned; and the δ-function δ(u, v)
is 1 if u = v and 0 otherwise; and m is the num-
ber of edges in the graph. To search for maximally
modular partitions of the graph into two communi-
ties, Newman defines a modularity matrix B, whose
i, j entry contains the contribution of edge i, j to the
modularity sum:

Bij = Aij −
kikj
2m

with the modularity then computable as

1

4m
sTBs,

if s is a vector such that si = 1 if node i belongs
to community 1, and -1 if it belongs to community
2. Newman observes that a good approximation of
the maximum modularity value of s is acheived by
choosing it to maximize the dot product with the first
eigenvector of B. The resulting split is then refined
by using it as the starting partition for a Kernighan-
Lin like procedure (Kernighan and Lin, 1970) which
settles on a reassignment of communities that max-
imizes ∆Q. Further splits are then attempted re-
cursively on each community until overall modu-
larity can no longer be improved. Like the original
Kernighan-Lin algorithm, the procedure is sensitive
to the order in which vertices are considered.

The algorithm of Blondel et al. (which we will,
following convention, refer to as the Louvain al-
gorithm) maximizes the same quantity but through
a two-phase agglomerative approach. In the first
phase, nodes all start out in separate communities,
then the mergers that maximize ∆Q are made, and
merging continues until modularity can no longer be
improved. In the second phase, communities are dis-
overed in the first phase are converted into nodes in
a new graph, with recomputed weights. Then the



process repeats until the first phase can make no im-
provement.

Attractive features of the algorithms include:

1. No k is chosen in advance. The algorithms de-
cide on the number of communities based on
a procedure which terminates when modularity
can no longer be increased. Both algorithms
may return a trivial solution in which there is
only one community. They are thus appropriate
for community discovery. This is in contrast to
many clustering procedures such as K-means,
for which k must be chosen in advance.

2. In Newman’s algorithm, the leading Eigenvec-
tor of modularity matrix B contains informa-
tion. The positions with the highest absolute
values correspond to vertices concentrating the
greatest mass of community evidence. If e is
the leading eigenvector, we refer to |ei| as the
community centrality of site i.

3 Data

The data for our case study was collected in July
of 2015 from 218 sites in the science fiction blog-
ging community with the aim of tracking an on-
going fracture in the community known as puppy-
gate. Fourteen seed webpages were chosen by inter-
net search on the term “puppygate”; the dataset was
extended by following links. Sites were labeled by
hand according to which one of two sides in the de-
bate they supported. We will refer to the two sides
as the “puppies” and the “others”.

The “Puppygate” controversy concerns the al-
leged hijacking of the science fiction community’s
annual award (the “Hugo” Award) by a group of
conservative writers, fans, and publishers who cir-
culated slates of eligible works, urging their read-
ers and followers to read and consider nominating
those works. Two slates in particular, known as the
“sad” and “rabid” puppies slates, attracted consid-
erable attention in 2014, earning a number of nom-
inations; and in 2015, after a similar campaign, 18
of the 20 Hugo finalists came from one of the two
“puppy” slates. Because the “puppies” (in particu-
lar “sad puppy” author Larry Correia) claimed they
were reacting against a nomination process already
firmly in the control of a cabal of liberal “Social Jus-
tice Warriors”, the controversy immediately took on

a “GamerGatish” color and polarizing tone, with po-
litical correctness being one of the main topics of
discussion. Many of the texts collected are vitriolic,
and the fact that the controversy also attracted the
attention of major media players such as Entertain-
ment Weekly, the Telegraph (in the U.K.), and Salon,
probably made things worse.

This dataset provides an ideal test case for our ap-
proach. It contains online texts produced by a com-
munity in fracture, with hyperlinks that can be used
to infer social ties; moreover, the blog documents
themselves very clearly establish community affilia-
tion. An additional feature of interest is that cross-
community links are quite common, often because
bloggers embroiled in the debate are quoting senti-
ments they abhor. Almost exactly 2/3 of the edges
are between nodes on the same side of the contro-
versy (758 out of 1142), but that means 1/3 span
between communities, making it more difficult for
a community detection algorithm operating on link
information alone to identify the fracture. This may
be one reason why linguistic information was able
to make a substantial contribution in this case.

4 Methodology

We compare the following three systems:
Link: This baseline system uses only
community detection on the original
link graph.
Ling: This system uses the full pipeline
described below, but only with proper
names features
LingLink: This full pipeline system
combines name features with commu-
nity features found by running commu-
nity detection on the link graph.

Ling and LingLink share the following pipeline:

1. Names are extracted using the Stanford Named
Entity Extractor (Finkel et al., 2005). Only per-
son and organization names are kept, with each
site represented as bag of names. If community
word features are being used. they are added to
the name bags.

2. Feature weights are assigned using Point-
wise Mutual Information (Church and Hanks,
1990). Features are filtered using PMI scores



to the FeatNum best features, resulting in an
NxFeatNum data matrix DM.

3. Dimensionality reduction using SVD maps
from NxFeatNum matrix DM to NxNumDim
matrix RDM. We had our best success using
the scikit-learn implementation (Pedregosa et
al., 2011) of the stochastic SVD algorithm of
Halko et al. (2009).

4. A similarity matrix SM is constructing from the
reduced data matrix RDM using cosine as the
similarity measure. For the associated graph
SG, an edge exists between i and j if either j
is among the top n most similar nodes to i or
i is among the top n most similar nodes to j,
with the proviso that no edge can exist between
vertices with similarity 0.

5. Dectect communities on similarity graph SG.

5 Results

Table 1 gives the results of our experiments for the
Ling and LingLink systems using Newman and Lou-
vain for community detection. Numbers shown are
all AMI scores x 1000, and ±-values show the 95%
confidence half-intervals after 10 runs of each sys-
tem. Indeterminacy was introduced by our stochas-
tic SVD implementation, as well as by Newman, be-
cause of the Kernighan-Lin like refinement step.

Table 1 shows that a system combining Linguis-
tic and network information improves significantly
on the baseline; note that almost all of the LingLink
systems improve on their Ling counterparts, demon-
strating fairly robustly that these linguistic features
alone cannot converge on a solution of the commu-
nity problem in an unsupervised setting.

6 Conclusion

Our results show that the best Newman-algorthm
based system gives a significant performance boost
over the baseline system in reconstructing the com-
munities in this fracture.

It is worth noting that the use of a community de-
tection algorithm does more than reconstruct com-
munities; it also discovers new subcommunities and,
in the case of Newman’s algorithm, yields central-
ity centrality assignments, potentially moving us to-

Newman
TopN NFeat NDim Ling LingLink

50

2K
3 118±05 158±10
7 94±10 157±28
25 88±14 146±16

5K
3 127±23 120±17
7 102±18 138±18
25 65±13 103±19

75

2K
3 110±13 292±40
7 106±11 180±46
25 38±34 131±24

5K
3 114±18 151±26
7 123±09 145±37
25 10±22 56±33

Louvain
TopN NFeat NDim Ling LingLink

50

2K
3 117±12 133±19
7 79±08 126±17
25 57±09 91±13

5K
3 83±17 128±11
7 110±14 129±10
25 51±13 51±09

75

2K
3 129±11 118±25
7 86±8 129±30
25 65±13 96±12

5K
3 127±21 182±28
7 107±13 124±9
25 58±14 58±11

Table 1: Upper table: AMI scores for the full pipeline systems

with Newman. The baseline Link system achieved an AMI of

.170 with a 95% confidence half-interval of 0, because the New-

man algorithm found the same community on all runs. Lower

table: same systems with Louvain.

ward a better understanding of the the players, the is-
sues, and future fractures. Many of our high-scoring
runs produce 3-community solutions of considerable
interest, most of which divided the puppies up into
two groups, corresponding to early and late arrivals
in the controversy. In addition, high-centrality par-
ticipants were mostly well-known figures in the de-
bates, with some interesting surprises. These are an-
alytical opprotunities well worth refining.
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