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This article introduces latent trajectory models (LTMs), an approach often employed in

social sciences to handle longitudinal data, to the arena of GIScience, particularly space-

time analysis. Using the space-time data collected at county level for the whole United

States through webpage search on the keyword “climate change,” we show that LTMs,

when combined with eigenvector filtering of spatial dependence in data, are very useful

in unveiling temporal trends hidden in such data: the webpage-data derived popularity

measure for climate change has been increasing from December 2011 to March 2013,

but the increase rate has been slowing down. In addition, LTMs help reveal potential

mechanisms behind observed space-time trajectories through linking the webpage-data

derived popularity measure about climate change to a set of socio-demographic covari-

ates. Our analysis shows that controlling for population density, greater drought expo-

sure, higher percent of people who are 16 years old or above, and higher household

income are positively predictive of the trajectory slopes. Higher percentages of Republi-

cans and number of hot days in summer are negatively related to the trajectory slopes.

Implications of these results are examined, concluding with consideration of the potential

utility of LTMs in space-time analysis and more generally in GIScience.

Introduction

Space-time analysis largely refers to detecting, visualizing, or explaining/predicting space-time

patterns for certain human or environmental phenomena of interest. As access to large corpora

of space-time data has substantially increased, it is evident that space-time analysis has drawn

increasing attention. Parallel to this trend, GIScientists face unprecedented challenges and

opportunities in “conceptualization, representation, computation, and visualization of space-

time data” (Kwan and Neutens 2014, 851). Considerable recent efforts1 have been devoted to
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addressing these challenges, including developing and synthesizing space-time conceptual

frameworks (An and Crook accepted; Yuan, Nara, and Bothwell 2014; An et al. 2015), eliciting

time geography patterns from individual movement and trajectory data (Baer and Butler 2000;

Kwan 1998, 2004; Downs, Horner, et al. 2014; Liao, Rasouli, and Timmermans 2014), and

developing innovative statistical indices, visualization methods, and/or analytical methods

(Rey and Janikas 2006; Chen et al. 2011). For an overview of space-time analysis, including its

origin, working definition, historic development, quantitative methods, and strengths and weak-

nesses, see Yuan, Nara, and Bothwell (2014) and An et al. (2015).

All the above endeavors have undoubtedly contributed to a better understanding of the

space-time patterns of interest and the mechanisms behind them. Nonetheless, traditional

space-time analysis faces a big challenge largely characterized by its loose coupling of spatial

processes and temporal processes of interest. This challenge first lies in the way the space-time

phenomenon of interest is represented, and thus the ways in which the corresponding data are

collected, organized, and analyzed. Researchers often focus on either the spatial or temporal

dimension of the corresponding phenomenon at the expense of the other. Geographers

(GIScientists in particular) tend to concentrate on the spatial dimension, which is understand-

able given their disciplinary emphasis on place and space along with the strength of geographic

information systems (GIS) in handling spatial heterogeneity (Peuquet and Duan 1995; An and

Brown 2008). However, remedies have been proposed to consider temporal variability in

space-time analysis, which, to some degree, have solved the challenge of lacking adequate tem-

poral dimension in space-time analysis (LeSage and Fischer 2008; Elhorst 2012; Downs, Lamb

et al. 2014). Evidence can also be found from the development and popularity of the snapshot

GIS data model (Armstrong 1988),2 enabling collection, storage, processing, and analysis of

data with both spatial and temporal stamps. Such data largely conform to the so-called spatial

panel data or “data containing time series observations of a number of spatial units” (Elhorst

2010, 377).

The limitation in traditional space-time analysis also connects to how spatial panel data are

analyzed. Analysis of spatial panel data has in a large sense become nearly interchangeable with

space-time analysis. To better explain spatial panel data or make predictions, space-time analysts

often use multivariate regression models. The common practice is to consider (1) correlation

among cross-time measurements of the same spatial unit, (2) some spatial effect terms such as

the spatial lags or spatial errors (Anselin, Le Gallo, and Jayet 2008; Elhorst 2010) or spatial filters

(Getis and Griffith 2002), or (3) spatiotemporal autocorrelation such as the geographically and

temporally weighted autoregressive (GTWAR) model (Wu, Li, and Huang 2014), which calcu-

lates a spatiotemporal distance as a linear combination of both spatial and temporal distances for

all the space-time points. Given the resulting spatiotemporal weights matrix that accounts for

both spatial and temporal laggings as well as a unique estimation technique, GTWAR is able to

fit the space-time data and generate predictions (Wu, Li, and Huang 2014).

Existing analytical methods largely suffer from a lack of robust methods to robustly cap-

ture the temporal trend of the phenomena under investigation for each individual spatial unit,

particularly as the time span becomes increasingly large. In addition, there is a dire need to bet-

ter explain (and predict in many instances) such temporal trends. In social science disciplines

such as demography and sociology, one approach called latent trajectory modeling (LTM) has

demonstrated excellent ability in handling the above challenge of elegantly handling temporal

variability in space-time analysis. The objectives of this article are thus threefold: (1) to

“borrow” and introduce the LTM approach from social sciences to GIScience, and especially
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to space-time analysis; (2) to show useful ways to filter out spatial autocorrelation in data

before employing the LTM approach; and (3) to demonstrate its power in unveiling the tempo-

ral trends hidden in large spatial panel data and the related mechanisms behind such trends.

Under the above three objectives, we introduce the concepts, and demonstrate the useful-

ness, of LTM using a space time data set collected through several sources. The remainder of

this article is organized as follows: The Methods section first introduces several key concepts

and equations in LTM, justifying why it can be instrumental to space-time analysis. Then, fol-

lowing our data description, the Results section reports the outcomes of the data analysis. The

Discussion section then addresses the implications of these results, and points out several cav-

eats of the work presented in this article. Finally, the Conclusion section points out the

strengths, weaknesses, and future directions of LTM in GIScience.

Methods

This section introduces LTMs, our space-time data set consisting of cyberspace and realspace

variables, and our data analysis strategy.

Latent trajectory models

LTMs are one of the major methods for the analysis of longitudinal data in the social sciences.

Also called latent growth models or latent curve models, they are traditionally used to study

the (often monotonic) growth of certain study units (e.g., children) in a certain measure (e.g.,

some test scores) over time (Guo and Hipp 2004; Bollen and Curran 2006, 1–15). The Longitu-

dinal data, characterized by repeated measures for each study unit over time, are assumed to

arise from a continuous underlying process or latent trajectory. LTMs aim to use these repeated

measures to estimate this latent trajectory that gave rise to these measures: what is the shape of

the trajectory, as determined by intercept and slope for a linear trajectory for a linear trajec-

tory? What covariates may help explain the trajectories that vary across study units? Therefore

in the LTM approach it is the parameters that characterize these trajectories [e.g., the intercept,

slope, and quadratic term in equation (1)], rather than components of these trajectories (i.e.,

measures at specific times and locations) on which traditional multivariate regression focuses,

that we want to explain or predict.

Given the nature of the research question under investigation, the researcher may assume a

linear or nonlinear trajectory over time. Among a rich spectrum of linear and nonlinear trajec-

tory models that are readily usable (Bollen and Curran 2006, 88–125), we introduce the quad-

ratic trajectory model that is used later in this article for space-time analysis:

yit5ai1ktb1i1k2
t b2i1eit (1)

Here the dependent variable y measured for study unit i (i 5 1, 2, . . ., N) at time t (t 5 1, 2,

. . ., T) is denoted as yit, which is modeled as a linear function of an intercept ai (note: the sub-

script i indicates this intercept is study unit specific; the same for b1i and b2i), a contribution

from time kt at the slope b1i, a contribution from the squared time or the quadratic term k2
t at

the curvature b2i, and a disturbance eit. To obtain a linear trajectory model, simply remove the

quadratic term k2
t b2i and the model becomes yit5ai1ktbi1eit. The curves below show three

exemplar trajectories: linear, quadratic, and exponential (Fig. 1). Note that kt represents a linear

passage of time, which is often coded as kt50; 1; 2; . . . ; T213 even though there are other
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alternative ways to code time (Bollen and Curran 2006, 113–120). Similarly, k2
t represents the

squared value of time, which often takes 0, 1, 4, . . ., (T21)2 to stand for acceleration (if b2i>

0) or deceleration (if b2i< 0) over time. Equation (1) can also be understood as a way to capture

temporal autocorrelation: once the parameters are determined, the y measure at any time can be

expressed as a function of the y measure at any other time, the known parameters, the elapsed

time, and the time square.

Here we express each trajectory parameter as the sum of an invariant component and a dis-

turbance term, which gives rise to the level 2 equations4 in regard to equation (1):

ai5la1fai
(2)

b1i5lb1
1fb1i

(3)

b2i5lb2
1fb2i

(4)

where la, lb1
, and lb2

are the global intercept, slope, and curvature, which are constant across

all study units. At the same time, each study unit’s trajectory parameters (i.e., the intercept ai,

slope b1i, and curvature b2i) may vary around these three global parameters at a magnitude of

three disturbance terms fai
, fb1i

, and fb2i
, respectively. There are a set of assumptions about

these disturbance terms about their variance and covariance structures (Bollen 1989, 22, 129),

which we skip due to space limitations. The simpler linear trajectory model can be obtained

through removing equation (4) and changing b1i to bi in equation (3).

In parallel with many practices in developing the expansion method (Casetti 1972; Jones,

III and Casetti 1992), space-time analysts also tend to include a number of covariates to explain

the above trajectory parameters ai, b1i, and b2i in addition to time and squared-time (or what-

ever time-related term(s)) as shown above. Assume that two covariates x1 and x2 are chosen

(for simplicity we do not use the seven variables listed in Table 1). We still use the same level

15 trajectory model [i.e., equation (1)], but add ca1
x1i1ca2

x2i, cb121
x1i1cb122

x2i, and cb221
x1i1

cb222
x2i to the right side of equations (1–4), respectively, giving the following three level 2

equations:

ai5la1ca1
x1i1ca2

x2i1fai
(5)

Figure 1. Trajectories of linear, quadratic, and exponential growth.
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b1i5lb1
1cb121

x1i1cb122
x2i1fb1i

(6)

b2i5lb2
1cb221

x1i1cb222
x2i1fb2i

(7)

Given the increasingly recognized usefulness and popularity of structural equation models

(SEM), we use the upper part in Fig. 2 (above the shaded area) to illustrate the quadratic LTM

without covariates (represented by equations (1–4)). Readers interested in the details of SEM

in this type of applications are referred to Bollen (1989) and Bollen and Curran (2006). The

whole diagram (with the lower shaded area) is used to illustrate the model with covariates (rep-

resented by equations (1) and (5) through (7)).6 Repeated measures (y1, . . ., y5 shown as rectan-

gles in Fig. 2) are predicted by the trajectory parameters a, b1, and b2 (treated as latent

variables and shown as circles in Fig. 2) with disturbance terms e1, . . ., e5.

In our model, we assume that data are collected at 5 times to conform to our data set as

shown below; in other cases, any number of repeated measures should be fine as long as the

research need and model identification requirements Bollen and Curran (2006, 21–25) are satis-

fied. The numbers near the arrows represent the amount of contribution these trajectory parame-

ters would exert on each y measure. Take y3 as an example: it receives one unit of contribution

from a, two units of contribution from b1, four units of contribution from b2, and an unexplained

residual term e3 (Fig. 2). Put another way, the relationship is y3 5 a 1 2b1 1 4b2 1 e3, which is

Table 1. Variables with Data Collected (All Data Are Collected at County Level)

Variable name Definition Year Source

Republican% Registered Republicans

as percent of county

total registered

voters

2012 Secretary of State (for

states with available

data) Voter Registra-

tion Stats

POP_density Number of people per

squared kilometers*

2010 U.S. Census Bureau;

TIGER Line Files of

U.S. Census Bureau

POP_Urban Percent of population

that is urban

2000 U.S. Census Bureau

Hot-Days Annual count of days

with daily maximum

temperature> 258C

2006 North American Cli-

mate Extremes Mon-

itoring http://www.

ncdc.noaa.gov/

nacem/index.jsp

Drought-Days Maximum number of

consecutive days

without precipitation

2006 Same as above

Age>16% Percent of population

16 and over

2010 U.S. Census Bureau

Med_HH_Inc Median household

income

2009 American Community

Survey

*This measure is derived from total county population and the area of the corresponding

county.
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equation (1) applied to measures at time 3. Here we also can see the numbers are time steps and

squared time steps that have elapsed since the beginning: At time 3, 2 time steps and 4 squared

time steps (i.e., 22) have passed, which explains the numbers 2 and 4 near the arrows from b1 and

b2 to y3 in Fig. 2 as well as those in the equation for y3.

Similarly, each of the three trajectory parameters or latent variables a, b1, and b2 are pre-

dicted by covariates x1 and x2 (the arrows in the shaded area), and the unexplained parts are

expressed as disturbance terms fa, fb1, and fb2. Therefore, the arrows within the shaded area

represent the relationships in equations (5–7). Taking a (or ai in Fig. 1, where subscript i is

used to emphasize a is specific to study unit i) as an example: it is predicted by a global inter-

cept ma (not shown in Fig. 2) and three incoming arrows that go from x1 (at the coefficient of

ca1), x2 (at the coefficient of ca2), and the error term fa. to a. Note the double arrows represent

allowance of some covariance structures, for example, between disturbance terms fa and fb1,

which can be specified in the model.

LTMs, if applied to analyze spatially contiguous data, need to take into account spatial

autocorrelation. Put another way, when estimating a, b1, and b2 according to equations (5–7)

for adjacent or near spatial units, the data at one unit are very likely similar to those at the

nearby units. According to Griffith (1988, 2000) and Chun and Griffith (2013), eigenvectors

derived from the corresponding binary connectivity matrix can be used as predictors so as to

screen out spatial autocorrelation in the data. In practice, this eigenvector spatial filtering

(ESF) approach has been demonstrated useful to filter out spatial autocorrelation from rela-

tively small (e.g., dozens or hundreds of spatial units; see Griffith 2002; Helbich and Arsanjani

2015) to relatively big samples (e.g., from 2,352 up to 63,000 spatial units; see Griffith and

Fellows 1999; Griffith 2008; Chun and Griffith 2011). Here, we extend the conventional LTM

approach and let appropriately chosen eigenvectors enter the model together with the set of

covariates (x1 and x2 symbolically in Fig. 2). Finally, through the method of maximum

Figure 2. A SEM diagram showing the linear and quadratic LTMs with 5 repeated meas-

ures and two covariates (to avoid making the graph too messy, we only show 2 covariates

out of the 7 we use). The boxes and arrows in the shaded rectangle are for the LTM(s) with

covariates.
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likelihood or restricted maximum likelihood, the coefficients and other parameters in equations

(5–7) can be estimated.

Once the spatial autocorrelation is addressed in LTMs, the interpolation of model out-

comes should focus on equations (5–7), or how covariates may help predict the trajectory

parameters a, b1, and b2 (represented as straight arrows in the shaded area of Fig. 2). Through

affecting these parameters, the covariates may contribute to predicting the dynamical trend of

the original measures y1, y2, up to y5. For instance, if a covariate (e.g., x1) predicts a negatively,

b1 positively, and b2 negatively, then it suggests that spatial units with high values of the cova-

riate may have low (negative) starting intercepts for y at the beginning (negative coefficient for

a) with all other covariates in control, but the y value increases with time (positive coefficient

for b1) in a deceleration manner (negative coefficient for b2). Similarly, if the coefficients for

a, b1, and b2 are positive, negative, and positively respectively, then the y measures are high at

the beginning, decrease over time, but may finally revert to an increasing trend due to the accel-

eration term.

Once we have predicted trajectory parameters, we can put them into equation (1), calculate

the disturbance eit, and examine whether these disturbance terms are spatially autocorrelated

using existing measures such as Moran’s I at each discrete time. As equation (1) is already a

function of time (i.e., expressed as kt and k2
t in our example), there is no need to examine

whether temporal autocorrelation may affect the LTM coefficients and their significance levels

as in traditional regression models, where temporally correlated measures are pooled together

and put into analysis.

Web-data collection

The LTM approach, when combined with the spatial filtering method, should be ideal for spa-

tial panel data analysis with considerable temporal complexity, including high time frequency,

long time span, and/or high spatial or temporal variability in the trajectories of interest. Below

we chose to expose this approach to a web-based data set as a demonstration of its usefulness.

Our choice of the web-based data set is due to its flexibility in data collection frequency and

time span, where realspace data (e.g., population census) do not have such an advantage.

We chose the topic of climate change because few issues loom larger as a threat to human

well-being, also because people’s interest or concern about climate change may last a long

time. Existing literature suggests that concerns or perceptions about climate change are often

strongly associated with resource (e.g., water) supply (March, Saur�ı, and Olcina 2014), region-

ally relevant activities (Scannell and Gifford 2013), summer temperature or colder winter

(Haden et al. 2012), climate variability (Donner and McDaniels 2013), and subnational place

attachment or political ideology (Devine-Wright, Price, and Leviston 2015), all of which vary

continuously (contingent upon human presence and density) at relatively large scales. There-

fore we assume people’s concern or care about climate change is spatially continuous and auto-

correlated (Tobler 1970) at a relatively large scale. This assumption is also justified by our

conceptualization that who you are, what you do, and where you live would affect how much

you are influenced by a certain concept or idea (Tsou and Leitner 2013). On the one hand, we

are collecting realspace data (i.e., Gallup survey data) over time to show temporal and spatial

trends in people’s interest and concern about climate change and what factors may affect such

trends (An et al. forthcoming).

At the same time, we consider web-based data as a useful data source that may shed impor-

tant insights into such interest and concerns, and such data as well as the related findings may
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complement and/or cross-verify the ones from the above realspace data analysis. Under this

context, we used Yahoo BOSS search application programming interfaces (APIs) to search

webpages relevant to the keyword “climate change” on a weekly basis between 11 November

2011 and 5 March 2013 (Tsou et al. 2013). The Google search engine gives a too limited num-

ber of research results per request, which does not satisfy our need to have a relatively large

sample so as to produce an interpolated map for the whole continental United States. In addi-

tion, the content analysis of our research results for the top 300 websites showed that the Yahoo

search returned a higher number of relevant educational websites (see below for why we

focused on educational websites), while the Google search missed a set of important educa-

tional websites that had been returned by the Yahoo search. Therefore, we chose the Yahoo

rather than Google search engine. Based on the returned websites (often in the amount of 700

to 1,000 for each keyword search request) and ranks of these sites given by Yahoo, we calcu-

lated a popularity index through reversing the rank value according to the following equation:

Popularity measure 5 Total number of web pages 11ð Þ2rank# (8)

This popularity measure was calculated for all the returned websites on the following five

dates: 11 November 2011 (T1), 4 March 2012 (T2), 1 July 2012 (T3), 4 November 2012 (T4),

and 5 March 2013 (T5). This quarterly frequency was chosen based on the aforementioned lit-

erature in regard to the influence of climate, weather, resources, and so forth. on people’s inter-

est or concern about climate change. All the websites returned from a certain search have an IP

address, and relying on the WHOIS database and the geolocation tools developed by (Tsou

et al. 2013), we extracted the latitudes and longitudes associated with all IP addresses and the

locations of the corresponding web servers. Thus, we mapped the popularity measure of each

webpage (web server) for the whole United States.

The issue of dislocation arose, however, in which a website registered at location A may

be physically located at (or associated with people who publish their ideas at) location B. For

this reason, raw mapping outcomes are not very useful to link to people on the real space. It

appears that only around 30% of the registered websites match their physical locations (Lusher

2013). Therefore, we inductively generated a 12-category typology, established its inter-coder

reliability, and applied it to classify all the websites into the following categories: blogs, com-

mercial, educational, entertainment and video, forum, governmental websites, informational

websites, news, NGO, social media (Twitter, Facebook), special interest, and offline websites

(for detail see http://mappingideas.sdsu.edu).

Then because of the relatively high locational accuracy (greater than 74%7; Lusher 2013)

of educational websites (i.e., website registration sites largely match their physical locations),

we mapped the education websites (the URL ends with .edu). These education websites repre-

sent all community colleges and 4-year colleges or universities as points on the map of United

States along with the popularity measure for each point.

The above points found through the Yahoo search are discrete over space. As mentioned

above, people’s concern or care about climate change is a large scale, continuous (contingent

upon human presence and density), and regionally autocorrelated phenomenon. Therefore, the

web-based point data should be interpolated to represent this phenomenon regionally. Among

the set of potential interpolation methods such as kriging, kernel density estimation, and vari-

ous distance-based weighting functions, we chose the kernel density function in GIS because

of the many associated benefits, such as allowing one point to represent several observations

and fitting a smooth surface around each point with diminishing values until reaching the
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search radius (zero at the radius; Silverman 1986, 76; ESRI 2013). These properties may better

represent the actual situation, in which the concern about climate change may diminish from

the corresponding website location till zero (i.e., places with little or none human presence

such as national parks and deserts) within a regional scale neighborhood (Scannell and Gifford

2013; Devine-Wright, Price, and Leviston 2015).

To help find out the suitable radius, we did a semi-variogram analysis based on the educa-

tion website data on March 5, 2013, and found a range that is around 200–500 km (similar

results for other four dates). Therefore, we chose a radius of 3 map units as threshold for each

kernel (one map unit represents one decimal degree, approximately 80 km in California8) and

created interpolated, continuous surfaces for the popularity measure at the county level for the

whole United States for each of the five chosen dates. This way we may “introduce” large scale

spatial autocorrelation in the data (such autocorrelation exists by itself as justified above; we

used kernel density function to recover this existence), which might pose a challenge in later

regression analysis unless specifically addressed (see section Data visualization and analysis

for how we deal with spatial autocorrelation). We chose county as unit of data collection and

analysis to allow for linking web-based data to census data (in section Discussion we will dis-

cuss this choice).

Counties with high popularity measures, however, do not necessarily imply high interest

or concern about climate change. Other factors such as population density, number of websites,

and amount of messages posted on websites may confound such measures. To find out the con-

founding, background “information flow,” we randomly selected a set of 168 most frequently

used English words in common writings (Tsou et al. 2013). We used these 168 words as key-

words, and followed the same procedures as above, and created a background information sur-

face. Subtracting this background surface from the aforementioned five derived surfaces, we

obtained five net surfaces that may largely represent the distinctive popularity of climate

change from people with, or related to people with, an occupation in education, largely teach-

ers, students, and staff from community colleges, 4-year colleges, and universities. Henceforth,

the term popularity refers to an interpolated popularity measure [equation (8)] based on

detected educational websites. Given the close coupling between people and schools (schools

tend to serve, and be located near, people), we interpret the term as the influence of the concept

“climate change” (sometimes observed climate change patterns as well) on local people, espe-

cially those with or related to an occupation in college education.

Finally, we collected real-space data for seven socioeconomic and demographic variables

for all the continental counties in United States from various sources (Table 1). This choice

was based on the conceptualization that who you are (demographic features), what you do

(income and occupation features), and where you live (geographic, environmental, and climate

features) would affect your likelihood of posting ideas or thoughts about an issue on websites

(Tsou and Leitner 2013). Based on the unique county ID, these real-space data were linked to

the above web-derived popularity measure in ArcGIS.

Data visualization and analysis

We first mapped the above cyberspace data to show how the measured popularity of climate

change (among people associated with education occupations) was distributed in the contigu-

ous continental United States over time. Then we picked five exemplar counties, which repre-

sent typical temporal trends in the data, to visualize the cross-time variability in the data. Then
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we built a quadratic trajectory model with and without the above seven covariates (Table 1) to

investigate the temporal trajectories following Guo and Hipp (2004).

To address the negative impacts of spatial autocorrelation on regression results (e.g.,

deflated standard errors and inflated degrees of freedom; Tiefelsdorf and Griffith 2007), we first

used a less effective (but helpful in some instances) method for comparative purposes: We ran-

domly chose 25% of all U.S. continental counties (i.e., 791 out of 3,109) and directly used such

data in regression analysis. The rationale is that a randomly chosen, small subset of original

(often spatially contiguous) data may have spatial autocorrelation at a minimum or substan-

tially reduced (An et al. 2011). On the other hand, eigenvectors can be chosen as predictor vari-

ables to filter out such negative impacts of spatial autocorrelation if the whole data set (3,109

counties in our case) is to be used according to Griffith (2000) and Chun and Griffith (2013).

One practical way is to choose the top n (n< 3,109 in our study) eigenvectors9 such that the

Moran’s I and the corresponding z score of the regression residuals [eit in equation (1)] go

below a certain threshold value such as 1.96 (Tiefelsdorf and Griffith 2007; Hughes and Haran

2013; Pace, Lesage, and Zhu 2013).

To find out the most appropriate spatial neighborhood definition that largely reflects our

choice of a large kernel density radius (section Web-data collection), we tried various orders of

contiguity (from 1st up to 20th with all lower-order neighbors included) in GeoDa under the

Queen’s neighborhood definition, which represent continuously increasing (from the county

under consideration) extents of spatial autocorrelation. Under each neighborhood (i.e., a 3,109

3 3,109 binary matrix of 0s and 1s) definition, we calculated the associated eigenvectors, used

a subset of them (up to the top 800 given our large sample size) in combination with the seven

covariates (Table 1) as predictor variables, and estimated the corresponding LTM. In each

related LTM, the design matrix X includes a column of 1s, the chosen top k (the minimum

number k is chosen to lower the spatial autocorrelation to an acceptable level such as z score-

< 1.96) eigenvectors, and the seven covariates (Table 1).Then under the above LTM, we calcu-

lated the corresponding residuals of all regression units (3,109 counties) at the beginning time,

that is, 11 November 2011.10 We then exported these residuals to GeoDa, calculated the

Moran’s I value and Z score, and evaluated whether the corresponding order of neighborhood

is reflective of our previous choice of kernel density radius and also effective to reduce spatial

autocorrelation, that is, to lower the z score of the corresponding Moran’s I value to acceptable

levels (e.g., z score< 1.96).

We first verified the outcome of our spatial neighborhood choice, that is, the correctness of

the binary spatial matrices, by examining the 1st, 2nd, and so forth neighborhood of all the

3,109 counties. For several spatial neighborhood definitions (here 3rd, 9th, and 16th),11 we

chose a varying number of eigenvectors (the top 10, 100, 200, 500, and 800, respectively) as

predictor variables in conjunction with the abovementioned seven covariates (Table 1). We

tested this varying number of eigenvectors to choose an appropriate number of eigenvectors

empirically as spatial autocorrelation filters in the context that inclusion of more eigenvectors

may decrease the Moran’s I value and z score of regression residuals nonlinearly (Tiefelsdorf

and Griffith 2007).

Then we implemented the LTM in SAS using the mixed procedure (Guo and Hipp 2004)

under two situations: 1) Model 1 (or M#1) in terms of equations (1–4), which includes the cho-

sen eigenvectors, the time (t), and quadratic (t2) terms; and 2) Model 2 (or M#2) in terms of

equations (1), (5), (6), and (7), where the time (t), the quadratic term (t2), the seven covariates,

and the same chosen eigenvectors (as in M#1) were predictor variables. We assumed a constant
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connectivity structure over time (i.e., the correlation in the popularity measure among nearby

counties at an earlier time would be carried over to later times), thereby the chosen spatial

neighborhood (connectivity) and the derived eigenvectors would be temporally invariant. In

the data set with 15,545 (3,109 counties 3 5 times) records, each chosen eigenvector should

therefore take the same value over five times for each county.

As the eigenvectors were used as spatial autocorrelation “filters,” we did not interpret their

coefficients as we did for the rest of the predictor variables. Under both Models 1 and 2 that

went through the eigenvector filtering procedure, we assumed a compound symmetry (CS)

covariance structure, implying that that all five measurements of the same county over time are

correlated in the same (linear or nonlinear) way, and that measures across different counties are

not correlated (Guo and Hipp 2004) after the spatial filtering process. For more details about

these steps (including the R and SAS code), visit our website at http://complexities.org/LTMs/

LTMs.htm.

Results

We first verified our spatial neighborhood choices. Taking San Diego as an example, the 1st,

2nd, 3rd . . .order spatial matrices (output from GeoDa) indicate 3, 7, 15, . . . “neighboring”

counties, and the counties thus identified were correct. For instance, Riverside, Orange, and

Imperial Counties were identified as the 1st-order neighbors of San Diego; and these three,

Figure 3. Snapshot maps on the popularity of climate change webpages in education institu-

tions for all continental counties in United States. For what dates T1–T5 represent, see Web

data collection section. To make the tone comparable, we have normalized the data before

creating the maps. See Appendix II for data normalization detail.
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with addition of Yuma (AZ), La Paz (AZ), Los Angeles (CA), and San Bernardino (CA), com-

prised the seven 2nd-order neighbors, and so forth.12 Our mapping effort showed that there was

considerable spatial variability in the popularity measure. Hot-spots were by and large located

in the western part of United States, for example, states of Washington and California, while

cold-spots were more in the eastern part. But overall there existed considerable temporal vari-

ability (Fig. 3). Note that we did not present the original (before removing the background—

see the Appendix about this issue) maps because they are potentially misleading: some hotspots

may simply arise from higher background values (e.g., due to more websites, higher population

density), and thus are not really hotspots for popularity in climate change. The temporal change

in the popularity measure for the five selected counties also suggested substantial variability in

the magnitude and change rate of the popularity measure (Fig. 4). When the 3rd-order connec-

tivity was used and the top 200, 500, and 800 eigenvectors were chosen as filters in the LTMs

with the seven covariates, the Moran’s I (z-value) values were 0.35 (86.91), 0.39 (91.26), and

0.41 (110.61), respectively. Similar results were obtained for the 9th-order neighborhood

choices. This may suggest that when spatial connectivity is not big enough to capture the

“interpolation-introduced” spatial autocorrelation (a proxy of the intrinsic regional autocorrela-

tion of the phenomenon), relying on a large number of eigenvectors alone is not effective. On

the other hand, under a reasonable neighborhood choice, the number of eigenvectors has a non-

linear effect in reducing spatial autocorrelation. For instance, under the16th-order neighbor-

hood choice, the models with top 10 and top 100 eigenvectors gave largely the same regression

results in terms of significance level and sign except for some fluctuations in coefficient

magnitudes.

After testing over various combinations between the number of eigenvectors (10, 100,

200, 500, and 800) and the order of neighborhood choice (from 1st to 20th), we decided to

choose the top 10 (out of 3,109) eigenvectors, under the 16th-order Queen’s neighborhood

choice (including all the lower order neighbors), as spatial “filters” of spatial autocorrelation in

the corresponding LTMs. Doing this way we successfully produced the lowest Moran’s I value

of 0.0022 (with z varying from 1.95 to 2.47 due to the randomized permutation method for

Figure 4. Temporal trajectories of five exemplar counties at five time points between

December 2011 and March 2013.
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calculating Z scores in GeoDa; Fig. 5). Under other combinations between the number of

eigenvectors and neighborhood choice, we were unable to lower the Moran’s I value and z

score to this level. The top 10 eigenvectors used in the LTM models (Table 2) were calculated

based on this neighborhood definition. To make the results more concise, we only report the

regression coefficients of top 4 eigenvectors in Table 2.

Our LTMs revealed some important spatial and temporal trends in the data. Given space

limitations, we elaborate on significant variables (i.e., P value< 0.05) only according to the

interpretation “rules” set out at the end of section Latent trajectory models. Model 1 showed

that all counties started at an average la of 1.6091 [equation (2)], with a linear increase rate

(lb1
) of 1.2713 quarterly (our data were collected at a quarterly interval), but the coefficient for

the quadratic term (lb2
) was negative (20.1646), implying a deceleration process. This is bet-

ter understood when we put equations (1–4) back to equation (1): yit 5 1.6091 1 fa 1kt

(1.2713 1 fb1) 1k2
t (20.1646 1 fb2) 1 e1t. The corresponding reduced-form equation, after

some algebra transformation, can be rewritten as yit 5 1.6091 1 kt (1.2713 – 0.1646

kt) 1 combined error (the eigenvectors are not included to simplify the illustration). This means

that as time elapses (i.e., kt increases), the term 1.2713 – 0.1646 kt will decrease till 1.2713 –

0.1646 kt 5 0 or kt 5 7.12. Once this time threshold is passed, the term 1.2713 – 0.1646 kt will

become negative and thus the measure yit will start to decline. If we graph the above results

about Model #1 in conjunction with the average popularity measures from original data at the

five time points, these trends could be visualized (Fig. 6).

Model #2 represented the quadratic model with all the time, time-square (quadratic), cho-

sen eigenvectors, and seven covariates (Table 2). The intercept la is 219.0911 (P 5 0.0157),

indicating that if all other variables in equation (5) are set to be zero, counties start at a negative

popularity measure at the beginning time. This value, however, is just a regression outcome

without much realistic meanings because none of the continental U.S. counties would have all

these variables equal zero. Three covariates, population density (0.0042), percent of population

16 years and over (0.1089), and medium household income (0.0002), predicted the intercept ai

positively. These coefficients suggested that the counties with higher values on these three

covariates, with control in all other variables, would have higher initial popularity measures at

Figure 5. Relationships between Moran’s I values, Z scores, and order of connectivity in

spatial neighborhood definition.
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Table 2. Coefficients and Other Parameters of Three Latent Trajectory Models

Models

#1: Quadratic model

(no covariates)

#2: Quadratic model

(with covariates)

#3: Quadratic model (with

covariates; 25% sample)

Intercept 1.6091 (<0.0001) 219.0911 (0.0157) 218.9643 (0.2948)*

t 1.2713 (<0.0001) 25.4851 (0.2519) 214.6196 (0.2181)

t2 20.1646 (<0.0001) 0.6993 (0.3769) 2.0498 (0.2970)

Predicting intercept

Republican% 20.9736 (0.5870) 3.6230 (0.3417)

POP_density 0.0042 (<0.0001) 0.0068 (<0.0001)

POP_Urban 0.0000 (0.9968) 0.0090 (0.6799)

Hot-Days 0.0056 (0.4311) 20.0064 (0.6027)

Drought-Days 0.0476 (0.2483) 20.0020 (0.9349)

Age>16% 0.1089 (0.0013) 0.0980 (0.6506)*

Med_HH_Inc 0.0002 (<0.0001) 0.0003 (<0.0001)

Predicting slope

Republican% 24.8242 (<0.0001) 27.2159 (0.0040)

POP_density 20.0019 (<0.0001) 20.0041 (0.0005)

POP_Urban 0.0006 (0.9199) 20.0140 (0.3305)

Hot-Days 20.0087 (0.0091) 20.0054 (0.5040)*

Drought-Days 0.0268 (<0.0001) 0.0314 (0.0491)

Age>16% 0.0939 (0.0996) 0.2417 (0.0890)

Med_HH_Inc 0.0000 (0.2160) 20.0000 (0.3886)

Predicting slope-square

Republican% 0.9692 (<0.0001) 1.2484 (0.0026)

POP_density 0.0002 (<0.0001) 0.0006 (0.0011)

POP_Urban 0.0000 (0.9712) 0.0016 (0.5131)

Hot-Days 0.0016 (0.0033) 0.0009 (0.4821)*

Drought-Days 20.0057 (<0.0001) 20.0051 (0.0516)

Age>16% 20.0121 (0.1988) 20.0349 (0.1378)

Med_HH_Inc 20.0000 (0.0376) 0.0000 (0.4149)*

The first four

significant

eigenvectors

E1: 256.2045

(<0.0001)

E1: 250.9547

(<0.0001)

No eigenvectors used

E2: 2146.87

(<0.0001)

E2: 286.6602

(<0.0001)

E3: 217.3786

(0.0003)

E3: 217.6264

(0.2295)

E4: 2123.64

(<0.0001)

E4: 291.8984

(<0.0001)

22LogL 90156.3 39608.2 10595.9

AIC 90368.3 39682.2 10661.9

BIC 91008.8 39874.1 10789.6

*These variables are shown to have significantly different roles in affecting the intercept,

slope, or slope-square due to model specification: Model #3 uses 25% of the whole data

records to accommodate spatial autocorrelation without using the eigenvector filtering

approach.
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the start time [refer to equation (5)). Such information is very useful because important aspects

of the space-time data at the beginning of our study time span could be derived: The initial

popularity measure for each county [i.e., ai in Equation (5)] is expressed as a linear combina-

tion of a global trend (i.e., ma), the covariates multiplied by their corresponding coefficients

(i.e., ca1
x1i1ca2

x2i
13), and a random error term (i.e., fai

). Therefore if we know spatial data of

the covariates (e.g., maps of the three covariates population density, percent of population 16

years and over, and medium household income), we can easily generate a map of the popularity

measure at the initial time.

In predicting the slope or linear term b1i in Equation (6), percent of Republicans

(24.8242), population density (20.0019), and the number of hot days (20.0087) were nega-

tive predictors, while the number of drought days (0.0268) was a positive predictor. When pre-

dicting the quadratic term b2i, percent of Republicans (0.9692), population density (0.0002),

and number of hot days (0.0016) positively predicted it, suggesting even though the popularity

trajectory may have a decreasing trend in places with high values for these covariates (i.e., they

predicted the linear term b1i with negative coefficients of 24.8294, 20.0019, and 20.0087),

the decreasing trajectories may turn to an increase curve in places with high values for these

three variables. The number of drought days positively predicted the linear term b1i (0.0268),

but with a negative coefficient (20.0057) for the quadratic term b2i, suggesting a county with

more drought days would have a more up-shooting trajectory compared to one with fewer

drought days, but the up-shooting trajectory may level off and ultimately go down if enough

time has elapsed.

Also worthy of mention is the way we handled spatial autocorrelation. Model 3 used only

a subset (25%) of all counties in the corresponding LTM without using any of the eigenvector

filters following (An et al. 2011). Compared to Model 2, we can see small (moderate to some

extent) differences in terms of sign and significance level among the coefficients (Table 2).

More specifically, percent of population 16 years and over and the number of hot days in

Model 2 were significant predictors for the intercept ai and slope b1i, respectively, while they

became insignificant in Model #3. When predicting the quadratic term, the number of hot days

Figure 6. The average trend (popularity of climate change) for all counties in continental

United States predicted by the linear model trajectory and by the quadratic model trajectory.

The original data at five time points (squares) are also plotted.
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and medium household income changed from significant in Model 2 to insignificant predictors

in Model 3.

Discussion

The latent trajectory characteristics revealed by Model #1 agree with our observations. The

model without covariates (Model #1; Table 2) predicted a positive intercept and slope, suggest-

ing that the overall popularity was positive at the original time and grew over time. The nega-

tive coefficient for time-square, 20.1646, may capture the fact that the popularity measure

grows at a decreasing rate over time, and finally the popularity may go down with time. All

these agree with the data shown in Fig. 6.

Equally interesting would be the contribution from the covariates. Due to data unavailabil-

ity, we were not able to collect data for these covariates at (or somewhat prior to) the same five

time points. This caveat may not be a big problem if such data do not change substantially over

our study time span (we believe this is true for the variables in Table 1), or such temporal

changes do not influence the dependent variable substantially. Due to space limitations and our

focus on methodology, we only elaborate on the reliability of part of the regression results.

Model #2 shows that counties with higher values for percent of Republicans, net the effects of

all other covariates, may be associated with a decreasing trend over time as the coefficient of

Republican% on b1i negatively (24.8242) predicted the slope. But this decreasing trend in pla-

ces with high percent of Republicans would change with time due to the positive coefficient

(0.9692) of this variable on the quadratic term. These results suggest that places with higher

percentages of Republicans may be less influenced by the concept of climate change at earlier

times, but as time elapses, these places might be increasingly influenced. This agrees with the

literature in regard to lower percentages of Republicans (compared to Democrats) believing

the existence of human-induced climate change (Krosnick, Visser, and Holbrook 1998) and the

increasing partisan gap on this belief from 1997 to 2008 (Dunlap and McCright 2008) and

from 2001 to 2010 (McCright and Dunlap 2011).

One plausible result is related to the variable number of hot days in summer: Model 2

shows that this variable has an insignificant impact on the intercept ai (0.0056), but a negative,

significant impact on the slope b1i (20.0087) and a positive, significant impact on the quadratic

term b2i (0.0016), indicating that places with varying number of hot days in summer may have

largely the same beginning popularity measures, but the trajectory may go down over time in

counties with high number of hot days. This downward trend will be reverted due to the posi-

tive coefficient for b2i (0.0016), ending up with an upward trajectory when enough time elap-

ses. This phenomenon could be correlated with other factors. For example, counties with

higher share in the fossil fuel industry may be thus less influenced by the concept of climate

change or the related discussions. Also this may be connected to the fact that these hot places

use air conditioning for a long time such that climate change effects (e.g., increasing tempera-

tures) do not cause concerns as large as other places that have fewer hot days and are thus more

sensitive to temperature changes.

Overall, the results are very reasonable, and some of them (e.g., those related to the tempo-

ral trajectories and predictors) are uniquely obtained using our LTM approach. However, we

should point out the caveats of the above regression results.

First the cyberspace data were only from educational websites, and the above results and dis-

cussions are only applicable to people related to educational occupation in a strict sense. More
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effort is needed to establish the link between these educational websites and the general public

on the real-space. As previously mentioned, we have been collecting Gallup Poll data to further

verify the representativeness of such education website data (An et al. forthcoming). Theories of

meme diffusion have contributed to identifying many of the factors specified in this study as rele-

vant moderators of how ideas may diffuse over time and space, including subjective homophily

of message content in a social network (e.g., political party), social network centrality (e.g., popu-

lation density), and geotechnical factors (e.g., weather; Spitzberg 2014). Our model specification

should continue to be guided by robust theories and domain knowledge in the future.

Second, the choice of county as unit of data collection and analysis, as mentioned above,

was primarily for socioeconomic and demographic data (e.g., U.S. Census data) collection. It

should be subject to in-depth test about the modifiable areal unit problem (MAUP) and/or eco-

logical fallacy. Further investigations on other units of analysis (e.g., change the unit to city,

township, or census tract) should be carried out in the future. But given the methodological

nature of this article as well as its exploratory (data mining) purpose, we hold the value of our

data collection and analysis pursuits.

Third and last, we expect that the neighborhood we chose based on the Moran’s I and cor-

responding z values should be largely equal to the extent of spatial autocorrelation specified

earlier as the radius (240 km) for the kernel density function, which was empirically deter-

mined based on the semivariogram analysis14 (section Web-data collection). This expectation

is confirmed by the large neighborhood chosen above, that is, the 16th order of Queen’s connec-

tivity. However given that the sizes of U.S. continental counties are so variable—from

59.13 km2 of New York County, New York to 51,947.24 km2 of San Bernardino County,

California (https://en.wikipedia.org/wiki/County_statistics_of_the_United_States), further

research may choose other potential spatial units that do not vary in area as counties do. At the

same time further research should be directed toward examination of the potential negative

effects of using such a strongly connected weights matrix, for example, biasing parameter val-

ues and significance levels (Smith 2009). Observing that the Moran’s I values and the corre-

sponding Z scores largely decrease as the order increases (Fig. 5), some interesting questions

may arise (especially) in regard to space time analysis of big data (data often characterized by

high volume, velocity, variety, and veracity; http://www-01.ibm.com/software/data/bigdata/,

last accessed 16 January 2015): What are the relationships between eigenvector selection and

spatial neighborhood definition? Should we still stick to a z score of 1.96 (corresponding to a P

value of 0.05) when analyzing big data? More efforts should be invested on such methodologi-

cal issues in the future.

Conclusions

With the plausibility of our modeling results discussed in section Discussion, we turn to the

power of the LTM-ESF approach. First, it is the trajectory of each spatial unit over time, rather

than certain measurements within the trajectory, that is of primary interest. When such trajecto-

ries are examined in regard to the relevant time-variants and covariates, it is possible to obtain

knowledge about the characteristics of, and mechanisms behind, such trajectories. To make the

LTM-ESF modeling philosophy easier to understand, we use a three-step procedure to elabo-

rate its robustness and uniqueness: (1) Time-wise regression: regress all values of a certain

variable against time given a time series of data at each geographical location, obtain the

parameters (e.g., intercept and slope for a linear model of time), and form a trajectory for that
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location; (2) Trajectory-wise regression: regress these trajectories (or more specifically, the

parameters characterizing such trajectories) against a set of selected covariates (which could

take varying values over time, but not time per se); (3) Spatial filtering: employ the ESF

approach to remove or reduce the biasedness in Step 2 that arises from the spatial autocorrela-

tion among these location-specific trajectories. The above Step 2 for trajectory-wise regression

is intellectually similar to earlier practices in developing the expansion method, for example, in

relation to expanding the traditional innovation adoption, the population growth, and many

other models (Casetti 1972; Jones, III and Casetti 1992).

Given this summary, it is clear that Steps 1 and 2 belong to the traditional LTM, which is

powerful enough to handle time series data without considerable spatial autocorrelation. Step 3

comes in when the time series data are also spatially autocorrelated, extending the traditional

LTM to geographical analysis with considerable spatial autocorrelation. In handling spatial

autocorrelation, it is common that some spatial neighborhood or dependence (e.g., through

defining spatial lag, spatial weights matrix, or whatever local neighborhood) is considered in

various spatial error, spatial lag, or autoregressive models (Griffith 1988; Getis 1990; Fother-

ingham, Charlton, and Brundson 2002; Getis and Griffith 2002; Anselin 2003; LeSage and

Fischer 2008; Elhorst 2012). The ESF has no exception in this regard. However, the ESF

approach is unique in the following aspects. Based on a transformed spatial weights matrix,

mutually orthogonal and uncorrelated eigenvectors can be derived to furnish uncorrelated map

patterns, ranging from the largest possible positive to the largest possible negative spatial auto-

correlation levels (Griffith 2000; Tiefelsdorf and Griffith 2007; Chun and Griffith 2011). Then

through applying a spatial filter (i.e., a subset of eigenvectors obtained through stepwise regres-

sion or selected from the ones with the highest eigenvalues) to the regression model as inde-

pendent variables, the spatial components in the related variable can be accounted for,

resulting in unbiased parameter estimates (Tiefelsdorf and Griffith 2007). The ESF approach to

handling spatial autocorrelation has many benefits, including applicability to all data types

(e.g., binary data, categorical data) and flexibility in choosing various form spatial neighbor-

hood definitions (e.g., the n nearest neighbors, within a certain distance, the ones we used in

this article). For more detail about this topic see An et al. (2015).

Additionally, this LTM-ESF approach has superior capacity to handle temporal variabili-

ty compared to most other modeling approaches. For instance, if data at all times are used in

traditional ordinary-least-squares (OLS) regression, the assumption of interdependence

among observations will be violated as multiple measurements of the same spatial units over

time are very likely correlated. Alternatively, we may choose data at one time or use the

average number (over time) for each spatial unit in regression, which loses the time dimen-

sion and thus, in essence, is not space-time analysis. In handling temporal autocorrelation,

the LTM-ESF approach is unlike many geographical approaches (e.g., GTWAR as reviewed

in Section Introduction) that use time lags or temporal weights such that data at nearer time

points contribute more to predicting the value at the time of interest. Instead, data points at

all times contribute to constructing a trajectory for each location of interest. This type of way

of handling temporal relationships in data should be more powerful when the time span is rel-

atively long, the temporal resolution is very fine, and/or outliers, errors, or variability in

measurements are prevalent at various or some time points. This not only saves computa-

tional time (e.g., no need to construct and compute so many local temporally weighted matri-

ces) when dealing with big data, but also reduces the sensitivity and vulnerability of
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regression results to measurement errors (the whole trajectories, not data at these time points,

are subject to analysis).

Therefore, the LTM-ESF approach empowers modelers to simultaneously take into

account both spatial (the ESF part) and temporal (the LTM part) autocorrelations, making

space-time analysis more capable of handling empirical space time data, especially big space

time data. As shown in Section Results, the coefficients predicting the intercept a of the related

LTM model can be used to derive important aspects of the corresponding space-time processes

at the beginning time. This merit may suggest that LTM could be a powerful tool for relatively

tight coupling of both spatial processes and temporal processes of interest.

The models in this article can be improved in several aspects. First, our LTMs were pro-

grammed in SAS, which does not provide several overall fit indices that are available in other

alternative software packages such as LISREL and MPLUS (Guo and Hipp 2004; Bollen and

Curran 2006, 44–54). Further testing the above models in these software packages may help

improve confidence in the model outcomes. Second, in regard to different ways of handling

spatial autocorrelation, we would lean toward Model #2 given our possibly more effective han-

dling of spatial autocorrelation (Moran’s I 5 0.0022 with a z score near 1.96) using the eigen-

vector approach (computationally intensive though) than the subsampling approach used in

Model #1. On the other hand, we believe that the subsampling approach is still useful in reduc-

ing spatial autocorrelation given its ease of use and its capacity to mostly reveal the effects of

predictable variables on the popularity trajectories. This method may find more applications in

analysis of big data, in which dropping some records during the subsampling process is not

only affordable but also sometimes helpful (e.g., in computationally intensive applications) due

to abundance of data. Third, this article demonstrates the usefulness of LTMs only using the

linear and quadratic forms, but there are other functional trajectories (piecewise, exponential,

cosine, etc.) or combinations of such forms that can be applied in other space-time analysis

applications.

LTMs may find applications in many areas within and outside the GIScience domain.

Examples include multitime analysis of some vegetation indices (e.g., NDVI after cross-time

registration) based on satellite imagery, space-time analysis of Twitter data (e.g., for detecting

diseases; Nagel et al. 2013), and regional space-time inequality analysis (e.g., for economic

development; Rey 2001; Rey and Janikas 2006). The rule of thumb is that, as long as spatial

panel data are available with autocorrelation existing over space and time,15 these data can be

exposed to this powerful approach. It is our hope that this article may remind GISciensts (or

scientists in general) of the usefulness of the LTM approach in deciphering spatial panel data.

We believe that more efforts should be invested to exploring its strengths, weaknesses, and

application domains in many geographic or interdisciplinary studies.

Appendix : Data normalization

For a certain time, we divide each county’s measure (based on classified data shown in section

Web-data collection) by the maximum measure among the whole 3,109 counties. This gives

rise to ratio 1 (R1), Then we divide each county’s noise measure (also based on classified data

shown in section Web-data collection) by the maximum noise measure among the whole 3,109

counties. This gives rise to ratio 2 (R2). The values in Fig. 3 are the differences between these

two ratios, or R1 – R2. But the data used in analysis are not subject to this normalization.
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Notes

1 The number of publications in relation to space-time analysis, according to an online search from web

of knowledge, has experienced an exponential increase since around 1990–1993 (An et al. 2015).

2 See related literature for strengths and weaknesses of this data model (Peuquet 1994; An and Brown

2008) and other alternative data models (Langran and Chrisman 1988; Worboys 1992; Yuan 1999).

3 A convention in LTMs is to code the beginning time as 0, and treat the first measure as the initial value

or intercept, and the following measures as a linear combination of this initial value and changes

brought in by the amount of time (and squared-time) that has passed since the beginning (Bollen and

Curran 2006, 90–93).

4 If substituting Equations (2)–(4) for the corresponding terms in equations (1), we arrive at the so-called

combined or reduced-form model. For simplicity we skip it, but the reader should be able to derive it

using simple algebra.

5 LTMs share much overlap (even equivalence) with multilevel models in many instances (Guo and

Hipp 2004; Preacher et al. 2008). Our SAS code is programmed in the mixed procedure that is also

used for multilevel modeling.

6 If the dashed circle and arrows in Fig. 2 are removed, the diagram becomes the linear LTM as described

above.

7 This accuracy was calculated at the city level (Lusher 2013). If aggregated to the county level (the spa-

tial unit of this article), the accuracy should reach around 85% according to the related literature (e.g.,

Shavitt and Zilberman 2010) and our team’s similar search on other keywords (Tsou et al. 2013).

8 This choice also hinges upon a communication theory about idea diffusion (Spitzberg 2014) as well as

our observations that different phenomena are spatially autocorrelated at different spatial extents and

levels (An et al. forthcoming).

9 We did not perform stepwise regression to choose eigenvectors as regressors as Tiefelsdorf and Griffith

(2007) did for two reasons: (1) choosing the top n (n could be 10, 100, 200, etc. in our case) eigenvec-

tors could also be appropriate, especially in situations with a large number of spatial units according to

our personal communication with Griffith and Chun (2014); (2) our data analysis later also showed that

the inclusion of the top 10 eigenvectors would reduce the spatial autocorrelation to an acceptable level.

10 The residuals associated with the other four times, when exposed to the Moran’s I test, show very sim-

ilar patterns as those at the beginning time.

11 These orders were chosen based on some preliminary observations that a neighborhood defined at a low

order alone was not likely to effectively reduce spatial autocorrelation to an acceptable level (e.g.,

z< 1.96) no matter how many eigenvectors were included. This may arise from the large spatial autocor-

relation size defined earlier in the radius of the kernel density function (section Web-data collection).

12 As mentioned earlier, our neighborhood definition is inclusive of all lower-order neighbors. For

instance, when creating the eigenvectors for the 2nd-order spatial neighborhood, all the 7 neighbors

(three 1st- and four 2nd-order neighbors) were used.

13 As mentioned earlier in section Latent trajectory models, this is a symbolic representation of all (not

necessarily 2) that can be included.

14 There is a growing amount of literature about extending traditional geostatistical methods developed

for point data (e.g., semivariogram) to applications in social sciences and medical sciences, which has

enabled these methods to handle aggregate data on regular or irregular area units such as census units

and counties (Goovaerts 1997, 2008; Chiles and Delfiner 1999).

15 Latent trajectory models allow some temporal complications in data collection and analysis, such as

unequal spacing over time (e.g., data collected at years 1, 2, 5, 6, and 9) and unbalanced data (some

units do not have data at some time points (Guo and Hipp 2004).
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