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Space–Time Analysis: Concepts, Quantitative
Methods, and Future Directions
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*Department of Geography, San Diego State University
ySchool of Economic, Political and Policy Sciences, University of Texas at Dallas

zSchool of Communication, San Diego State University
xDepartment of Linguistics, San Diego State University

#Department of Political Science, San Diego State University

Throughout most of human history, events and phenomena of interest have been characterized using space and
time as their major characteristic dimensions, in either absolute or relative conceptualizations. Space–time
analysis seeks to understand when and where (and sometimes why) things occur. In the context of several of
the most recent and substantial advances in individual movement data analysis (time geography in particular)
and spatial panel data analysis, we focus on quantitative space–time analytics. Based on more than 700 articles
(from 1949 to 2013) we obtained through a key word search on the Web of Knowledge and through the
authors’ personal archives, this article provides a synthetic overview about the quantitative methodology for
space–time analysis. Particularly, we highlight space–time pattern revelation (e.g., various clustering metrics,
path comparison indexes, space–time tests), space–time statistical models (e.g., survival analysis, latent trajec-
tory models), and simulation methods (e.g., cellular automaton, agent-based models) as well as their empirical
applications in multiple disciplines. This article systematically presents the strengths and weaknesses of a set of
prevalent methods used for space–time analysis and points to the major challenges, new opportunities, and
future directions of space–time analysis. Key Words: absolute versus relative space, review, simulation models,
space–time analysis, statistical models.

大部份人类历史所关注的事件与现象，透过运用空间和时间作为其主要的特徵面向，以绝对或相对的

概念化进行描绘。时空分析企图理解何时、何地（有时是为何）事情会发生。在个体活动数据分析（特
别是时间地理学）和空间面板数据分析的部分最晚近且实值进展的脉络中，我们聚焦量化时空分析。根
据我们对知识网进行关键词搜索以及作者的个人档案资料所获得的七百篇以上的文章（自1949 年至
2013 年），本文对时空分析的量化方法，提供了综合性的概要。我们特别凸显时空模式揭露（例如各种
集群计量、路径比较指标、时空检定）、时空统计模型（例如存活分析、潜在轨迹模型），以及模拟方法

（例如细胞自动机、以行动者为基础的模型），以及它们在多重领域的经验应用。本文系统性地呈现一
组用来进行时空分析的盛行方法的优劣之处，并指出时空分析的主要的挑战、崭新的契机，以及未来
的趋势。关键词：绝对空间相对于相对空间，回顾，模拟模型，时空分析，统计模型。

Durante la mayor parte de la historia humana, la caracterizaci�on de eventos y fen�omenos interesantes se ha
basado en el espacio y el tiempo como sus principales dimensiones, tanto en absolutas como relativas concep-
tualizaciones. El an�alisis espacio-tiempo busca comprender cu�ando y d�onde (y algunas veces por qu�e) ocurren
las cosas. Dentro del contexto de varios de los m�as recientes y sustanciales avances en el an�alisis de datos del
movimiento individual (geograf�ıa del tiempo en particular) y an�alisis de datos del panel espacial, nosotros nos
enfocamos en la anal�ıtica cuantitativa del espacio-tiempo. Este art�ıculo entrega una visi�on de conjunto sint�e-
tica acerca de la metodolog�ıa cuantitativa para el an�alisis del espacio-tiempo, a partir de m�as de 700 art�ıculos
(de 1949 a 2013) que obtuvimos por medio de una b�usqueda con palabras clave en la Web of Knowledge [Web
del Conocimiento] y en los archivos personales de los autores. En particular, destacamos el patr�on de revelaci�on
del espacio-tiempo (e.g., varias medidas de agrupamiento,�ındices de comparaci�on de rutas, pruebas de espacio-
tiempo), modelos estad�ısticos de espacio-tiempo (e.g., an�alisis de supervivencia, modelos de trayectoria
latente), y m�etodos de simulaci�on (e.g., aut�omata celular, modelos basados en agente) lo mismo que sus aplica-
ciones emp�ıricas en m�ultiples disciplinas. Este art�ıculo presenta sistem�aticamente las fortalezas y debilidades de
un conjunto de m�etodos prevalentes usados para el an�alisis del espacio-tiempo y apunta a los principales retos,
nuevas oportunidades y direcciones futuras del an�alisis espacio-tiempo. Palabras clave: espacio absoluto vs. espacio
relativo, modelos de simulaci�on, an�alisis espacio-tiempo, modelos estad�ısticos.

Annals of the Association of American Geographers, 105(5) 2015, pp. 891–914 � 2015 by Association of American Geographers
Initial submission, June 2014; revised submissions, October and December 2014; final acceptance, February 2015

Published by Taylor & Francis, LLC.

D
ow

nl
oa

de
d 

by
 [

SD
SU

 S
an

 D
ie

go
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 1

0:
22

 1
5 

Se
pt

em
be

r 
20

15
 



S
pace and time are fundamental characteristics
used to understand events and phenomena of
interest, allowing people to make sense of the

surrounding world (Cresswell 2013). Studied for mil-
lennia, space and time have often been described as
the stage on which all these events and phenomena
take place (Ashtekar 2006). From early civilizations
to modern societies, humans have consistently
viewed space and time as intimately linked and
inseparable (Quespi 1994), which explains the nota-
tion space–time (Yuan, Nara, and Bothwell 2014).
Various ontological frameworks for representing
real-world entities over space and time, along with
the associated epistemologies for addressing theoreti-
cal or practical issues in space–time analysis, have
existed since antiquity and have become a hot
research area in GIScience in the era of digital com-
puters and big data (Kwan and Neutens 2014). In
this context, the overarching goal of this article is
to provide a synthetic understanding about the
methodology for space–time analysis in the hope of
advancing this important scientific field.

Space–time analysis, in general, seeks to answer
questions of both when and where (as well as why
to some extent) things occur, but the meanings of
these words can vary greatly (Couclelis 1999). As
Peuquet (2002) pointed out, space and time have
twelve and twenty-nine separate definitions, respec-
tively, in Webster’s New Twentieth Century Dictio-
nary. When can be defined as relative to another
event (time between earthquakes), the time that it
takes an event to occur (length of an earthquake),
the time on the clock at which an earthquake
occurs, or cyclicity related to repetition, sequential-
ity, or pattern over time of aftershocks (Van Fraas-
sen 1970). Space1 can be defined as the coordinates
(e.g., in latitude and longitude and sometimes also
in elevation) of an object or the distance2 between
objects (Van Fraassen 1970). These ambiguities
have led to a rich literature on the nature of space
and time in physics, psychology, cognitive science,
and philosophy, seeking insights into whether space
and time is a substance by itself or simply properties
of some substance, whether the origin of space–time
representation is constrained by objects, whether
our ideas of space and time come from our percep-
tions and experiences of spatial or temporal rela-
tions, and so on (Janiak 2009; de Hevia et al. 2014;
Yuan, Nara, and Bothwell 2014).

Various conceptualizations of space and time
have arisen as a response to the fact that both are,

in fact, invisible (Dainton 2001). Thinking of space
as “absolute space” results in the concept of space
having specific properties (Hinckfuss 1974). Space
and time, in this view, are thought of as containers
into which all other things occur (Dainton 2001).
Newton’s analysis of space and time used this con-
ceptualization of absolute space, as he used the lan-
guages of mathematics (geometry and calculus) to
describe laws of motion regarding the trajectories of
moving objects in space and time. Here, space and
time constitute an absolute framework through
which the object moves, as the framework itself
remains unchanged (Peuquet 2002).

Alternatively, the concept of relative space, pro-
posed by Leibniz, grew as a response to Newtonian
conceptions (Cresswell 2013). In relative space, space
is created through the relationship between objects
rather than being a preexisting container in which
objects exist (Dainton 2001). In the nineteenth cen-
tury, Minkowski developed the united, relativistic
space–time concept, in which traditional three-
dimensional geometry was extended to include time
as a fourth dimension (Peuquet 2002). The relative
view of space continued to be developed by scholars
from many disciplines and culminated in Einstein’s
theory of relativity. Einstein emphasized the insepara-
bility between space and time in his saying that
“When forced to summarize the general theory of rel-
ativity in one sentence: Time and space and gravita-
tion have no separate existence from matter” (Albert
Einstein Site Online 2012). Conceptualizations of
space–time have been developed at very large and
very small scales in disciplines such as electronics,
mechanics, and cosmology. At the human and land-
scape scales, space–time analysis has roots in and con-
tributes to biology, ecology, hydrology, epidemiology,
geography (especially the subdisciplines of geographic
information systems [GIS] and remote sensing), and
the like.

Space–Time Models in Geography

Space–time models in geography can be based on
either the absolute or relative space time conception
(Massey 1999). Studies using fixed coordinate systems
to mark the changes in their variables (which include
many of the models outlined here) employ an absolute
representation, whereas studies using an object-ori-
ented approach might be based on a relative represen-
tation (Raper and Livingstone 1995).
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Geographic models of the physical environment
have historically assumed a two-dimensional spatial
structure of grid or vector, neglecting time as a key
dimension of concern and the possibility of an inte-
grated space–time conceptualization (Raper and Liv-
ingstone 1995). Early academic geography, as
conducted by Darwin, von Humboldt, Ritter, and
others, focused on places, including the physical and
human differences between places. Until the mid-
twentieth century, regional geographers continued
with this tradition. Drawing on ideas of Kant and his
fellow philosophers, regional geographers such as Hart-
shorne saw space and time as two key categories within
which all activity occurs instead of viewing them as
something to be considered in tandem. Hartshorne
saw history as the discipline to address changes in time
and geography as the discipline to address differences
in space (Cresswell 2013).

The rise of spatial science within geography in the
1950s and 1960s signaled the entry of geographers into
the era of quantitative revolution. Early models such
as those by von Th€unen and Christaller, however,
largely ignored time or viewed it as a function of spa-
tial variables such as distance or transportation costs.
Movement and transportation, which are now con-
cerned with time as much as space, were considered as
being “effectively studied in spatial terms.” This means
that movement is dictated by economics: supply and
demand, least net effort, and travel costs (Cresswell
2013). Time geography, an attempt to move away
from the place-based aggregations and generalizations
of early spatial science, arose to capture and model
individual movement trajectories in both space and
time (H€agerstraand 1970; Miller 2005). In formulating
the research area, H€agerstraand (1970) noted that “we
need to better understand what it means for a location
to have not only space coordinates but also time coor-
dinates” (9–10). At every point in space where a per-
son exists, that person also exists at a particular point
in time, which underlies the space–time cube repre-
sentation3 (H€agerstraand 1970).

Despite widespread recognition of a united space–
time structure, many disciplines, in practice, have
exclusively focused on adequate characterization of
one at the expense of the other. Geographic space–
time models often use GIS in their representation of
space, and to some extent, time in a granular (contrary
to continuous) space–time format (Couclelis 2010).
Traditionally, GIS has represented space well using
the snapshot GIS data model (Armstrong 1988) but
has done a comparatively poor job at representing

time (Peuquet and Duan 1995). Usually, a spatially
and temporally continuous world is represented as a
sequence of limited snapshots in time, and various
frameworks (including data models) are presented to
better track and query behaviors and interactions of
discrete objects (Peuquet and Duan 1995; Yuan 1999;
An and Brown 2008; Long and Nelson 2013; Yi et al.
2014).

Goals and Objectives of This Article

Given the long-standing tension between
“scientific” and “humanistic” space–time conceptuali-
zations (Travis 2014), this article focuses more on the
scientific side of this concept. Even within the scien-
tific domain, different disciplines—including but not
limited to mathematics, philosophy, physics, biology,
hydrology, epidemiology, electrical engineering, and
geography—have developed distinct traditions of con-
ceptualizing the relationships between space and time
(Couclelis 1999). This literature review gives an over-
view of the breadth of space–time analysis research
among numerous disciplines, before focusing on spe-
cific methodologies in geography.

There is no unanimous definition for space–time
analysis, yet such analyses are used extensively across
various disciplines. Here we offer a working defini-
tion: Space–time analysis is the representation
(including mathematical, physical, or visual repre-
sentation) of changing location in space and time of
a certain phenomenon, object, process, or event of
interest. The descriptive, explanatory, and predictive
functions provided through space–time analysis gen-
erally seek understanding about the mechanisms
behind such space–time data. Here an object could
be both mobile (e.g., vehicles, persons) and immo-
bile (e.g., land parcels, pixels) relative to the per-
ceiver. Under our overarching goal of providing a
synthetic understanding about the methodology for
space–time analysis, three specific objectives are to
(1) assemble and review literature from a wide range
of disciplines, (2) synthesize and present the status
quo of the related space–time analysis methods in
these disciplines, and (3) point out promising areas
of research in the future. We hope this article will
be helpful to researchers in a breadth of disciplines
or areas, particularly for those big data miners seek-
ing understanding in various real (e.g., geographical
systems, human–environment systems) or virtual sys-
tems (e.g., online tweet-based networks). We believe
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that our methodological focus will be a timely and
meaningful contribution to GIScience in an era
when “the availability of multi-temporal geographic
data has outpaced the development of spatial-tempo-
ral analysis methods” (Robertson et al. 2007, 208).

Methods

With the preceding goal and objectives in mind, we
have conducted the following three-step procedure,
which aims to search articles related to space–time
analysis. With the articles thus collected, we review
them with a focus on the methods under which space–
time analysis is conducted. Particularly, we are inter-
ested in how space and time are represented and how
potential mechanisms are derived through analytical
or simulation work on the corresponding space–time
data.

As a first step, we performed an online search based
on Web of Knowledge. We used a combination of
“space time analysis” OR “space time model” OR
“space time modeling” OR “spatial temporal analysis”
OR “spatial temporal model” OR “spatial temporal
modeling” OR “spatiotemporal analysis” OR
“spatiotemporal model” OR “spatiotemporal mod-
eling.” Note that a dash between two words does not
produce any differences in search outcomes—for
example, spatiotemporal is considered identical to spa-
tio-temporal. Some terms, although relevant, are
excluded in the search because they are either deemed
too peripheral or derivative (e.g., chronemics, sequen-
tial, timing, proxemics, movement, and motion) or
not representative of the dual nature of space–time
analysis (e.g., spatial analysis, spatial modeling, tempo-
ral analysis, and time series). As a huge number of
papers are returned if topic is used, we limited our key-
word-based search to title only.4 To ensure that the
words are shown in the title exactly as we have listed
(e.g., space time model rather than space . . . time . . .
model), we used quotation marks for each key word
phrase, thereby excluding those bearing little rele-
vance and limiting the number of returns.

In the second step, we reviewed and classified the
articles assembled in Step 1 by putting a year stamp on
each of them and classifying them into their corre-
sponding disciplines based on their abstracts and key
words. We then aggregated these papers from their dis-
ciplines into a broader category of social sciences, life
sciences, formal sciences, physical sciences, earth sci-
ences, and medical sciences. The term formal sciences

is used to represent disciplines concerned with formal
systems, such as logic, mathematics, statistics, theoret-
ical computer science, information theory, game the-
ory, systems theory, decision theory, and portions of
linguistics.

Complementary to the search through Web of
Knowledge, we then assembled articles and book chap-
ters that have been either included in the authors’
personal archives or recommended by the four anony-
mous reviewers of this article. Particularly we include
a number of presentations or articles from (1) the
2010 Space Time Modeling and Analysis Workshop
sponsored by ESRI, the largest GIS software company
in the world (February 22–23 2010, Redlands); (2) the
Annals of the Association of American Geographers
(AAG) forum in 2013 that is based on the Space–
Time Integration Symposium in Geography and
GIScience at the 2011 AAG annual meeting (13–15
April 2011, Seattle); and (3) a recent special issue of
the International Journal of Geographical Information Sci-
ence (IJGIS) on space–time research in GIScience.
The reason for so doing is that the search in the first
step could be quite restrictive, and many related
articles do not use the specified terms (e.g., spatial tem-
poral model) in their titles.

Results

Descriptive Statistics

Our search based on the three-step procedure
returned a total of 700 articles as of 17 April 2014.
There are some interesting patterns associated with
these papers. First, the forty years from 1949 to 1989
witnessed a slow linear increase in the number of pub-
lications, and then from 1990 the number rose rapidly
at an exponential rate with some yearly fluctuations
(Figure 1). To show that this exponential increase is
not likely due to a similar increase pattern in the num-
ber of potential publication outlets, we also show the
search results for “theory of relativity” and “urban geo-
graphy” under the same parameters (key word within
quotation marks and as title) on the same engine. It is
clear that publications on these two other key words
do not show a similar increase pattern as our results for
space–time analysis. Then we claim that this trend of
exponential rise would more likely reflect the increas-
ing popularity of space–time analysis over the last two
decades.
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These 700 papers are scattered among a range of
disciplines. Studies in many areas such as epidemiology
(e.g., Assu~nçao, Reis, and Oliveira 2001), meteorology
(e.g., Sans�o and Guenni 1999), climatology (e.g., Nail,
Hughes-Oliver, and Monahan 2011), and transporta-
tion (e.g., Kamarianakis and Prastacos 2005) focus on
predicting space–time patterns of certain units or phe-
nomena of interest with a disciplinary theoretical or
empirical background. If we aggregate all of the related
disciplines to the eight categories shown in Figure 2,
then the top three scientific categories that contribute
to space–time analysis are medical sciences
(24 percent), formal sciences (19 percent), and earth
sciences (16 percent).5 If we delve into individual
disciplines, then mathematics and statistics (ninety-
seven entries, same hereafter), epidemiology (eighty-one),
neurosciences (seventy-eight), biology (fifty-four),
ecology (forty-four), urban studies (thirty-one),

hydrology (thirty), and physics (twenty-nine) make
the biggest contribution to the publications (data not
shown). Among these publications, mathematicians
or statisticians develop formulations (e.g., Bayesian
models) to express space–time dynamics in mathemat-
ical or statistical terms and to create theoretical and
applied frameworks for analysis and decision making
under ambiguity. Conceptual and mathematical mod-
els are developed to represent, explain, or predict
phenomena (e.g., high-energy scattering, Hadron–
Nucleus collision at high energy) in the physics world.

The word cloud of all the papers (Figure 3) shows
the high-frequency words that are used in the corre-
sponding abstracts. It is expected that terms like data,
study, and patterns are displayed as high-frequency
words. More interesting to us would be those midfre-
quency words that show either the methods being used
(e.g., Bayesian and [time] series), areas of study (e.g.,
rainfall, health, malaria, and disease), or data charac-
teristics (e.g., correlation and cluster). All of these
word-cloud findings corroborate our previous findings

Figure 1. Number of papers with “space–time analysis” and alike
in title from 1949 to 2013. (Color figure available online.)

Figure 2. Bar chart of space–time analysis papers in different disci-
plines. (Color figure available online.)

Figure 3. Word cloud of words in abstracts of all searched papers (words of higher frequency are displayed in larger font either horizontally
or vertically), where the words space, time, analysis, model, modeling, spatial, temporal, spatiotemporal, using, and used are excluded from the
word cloud.
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about what disciplines, by what methods, are contrib-
uting more to space–time analysis.

Before we review methods or conceptual models
that can be used to perform space–time analysis with a
focus on geographical and environmental studies, we
classify units of space–time analysis into the following
two broad categories and link them with the three
major data types (Table 1):

1. Individual objects that are often mobile (relative
to an observer; e.g., a space–time modeler).
Examples include animals, people, vehicles,
boats, aircrafts, or groups of these objects. When
tracking objects over time, the resultant data are
the so-called tracking (Goodchild 2013) or
movement data (Long and Nelson 2013).

2. Cross-sectional units that are georeferenced
and often immobile. Such units could consist
of three subtypes of (1) pixels or cells (could be
simplified to points), (2) parcels or polygons
(e.g., vegetation communities, households, vil-
lages, or towns that are sometimes subject to
changes in shape, size, or boundary), and (3)
data collection (e.g., experiment or observa-
tion) sites (sometimes within a network) with
spatial stamps. When collecting data of these
three subtypes, we largely obtain the so-called
temporal sequences of snapshots, temporal
sequences of polygon coverages, and multidi-
mensional data, respectively (Goodchild
2013). Here we use the term spatial panel data
to indicate data of this type (Table 1) or “data

containing time series observations of a num-
ber of spatial units” (Elhorst 2010, 377).
Depending on the researcher’s interest and
objectives, sometimes tracking data can be
“downgraded” to spatial panel data through, for
example, aggregating object-level data at dis-
crete times (or time intervals) and spatial loca-
tions to time sequences of cross-sectional
measurements.

One special type of data is event or transaction
data, where the variable of interest is often nominal
(e.g., yes or no event at a certain time and location).
For instance, when tracking individual people about
their house or apartment purchase actions, we are only
interested in the place (e.g., x and y coordinates or ZIP
code of the purchased house) and the time related to
the transaction rather than places and times of all
their activities over a certain time span. Then depend-
ing on whether we are interested in individual objects
(i.e., the ones who have enabled or participated in the
event(s) or transaction(s) at a time and place) or the
density, location, or timing of these events or transac-
tions, we can classify such data into tracking data or
spatial panel data, respectively (Table 1). Accord-
ingly, we classify space data analysis models or meth-
ods into two categories of individual movement data
analysis and spatial panel data analysis, which are
largely (with exceptions) engaged in analysis of track-
ing data and spatial panel data, respectively (Table 2).
Next we review space–time analysis models or meth-
ods based on this classification.

Individual Movement Data Analysis

Here we consider individual movement data analy-
sis as a relatively new framework for space–time analy-
sis, which represents a paradigm shift from the
traditional place-based aggregations without explicit
time consideration. The most noteworthy achieve-
ment along this line might be the time geography
research, which originally focused on tracking human
movements on an individual basis through creating
space–time life paths (a path is an ordered sequence of
fixes collected at regular or irregular time intervals),
where a horizontal plane is employed to stand for posi-
tions in traditional geographical space and a perpen-
dicular direction is used for times (H€agerstraand
1970). Space–time life paths are used to create space–
time prisms, showing the potential range of movement

Table 1. Space–time analysis: Spatial units and data type

Space–time
data type

Space–time
analysis unit

Subcategory 1 Subcategory 2
Individual
objects

Cross-
sectional units

Tracking data Regular
tracking data

@

Event and
transaction dataa

@

Spatial panel
data

Regular spatial
panel data

@

Event and
transaction datab

@

aThe data are about who enabled or participated in the event(s) or transac-
tion(s) in what place(s) and at what time(s).
bThe data are about some aggregated attributes of these events or transac-
tions at various spatial units.
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within an individual’s world when accounting for vari-
ous constraints on movement due to biological, physi-
cal, and physiological necessities and public and
personal decision making (H€agerstraand 1970). Next
we break the methods and models into three catego-
ries: pattern revelation, space–time statistics, and pro-
cess-based simulation. As Long and Nelson (2013)
made a very comprehensive overview on time geogra-
phy methods and models, especially on those for pat-
tern revelation, we only provide a brief review here
and refer readers interested in more details to the
article.

Pattern Revelation

Inspired by the time geography framework, individ-
ual movement data analysis aims at revealing move-
ment patterns, via robust statistics and visualization
methods, of any individual moving objects (e.g., ani-
mals, vehicles). In recent years, the amount of

individual, georeferenced human or nonhuman activ-
ity data required to construct models of individual
movement has increased greatly due to rapid improve-
ments in geospatial information technology (Kwan
2004; Kwan and Neutens 2014). In conjunction with
the wealth of new data, the ability to capture, repre-
sent, explore, and analyze large space–time trajectory
data continues to improve (Miller 2005). These meth-
ods and models include the development of path
descriptors, path similarity indexes, pattern and cluster
methods, dynamics of individuals within a group, spa-
tial field methods (generalizing movement data to
cell-based densities), and spatial range methods
(polygonal representation of movement area). The
usefulness of these methods cannot be overestimated.
For instance, comparisons between space–time paths
can be conducted through the use of path similarity
indexes including Hausdorff distance and Frechet dis-
tance, the dynamic time warping algorithm, the multi-
objective optimization evolutionary algorithm

Table 2. Space–time analysis: Data type and methods

Space time analysis Data type

Purposes
Exemplar
methods

Tracking
data

Spatial
panel data

Transaction
/ Event data

Individual movement
data analysis

Pattern revelation Time geographya @
Path description,

comparison, accessibilitya
@

Space–time point pattern @
Spatial association of

movement vectors
@

Others @
Space–time statistical

models
Probabilistic time geography @ @
Survival analysis modelsb @ @
Others @

Process-based simulation Agent-based modelsc @ @
Others (e.g., Markov models) @

Spatial panel data analysis Pattern revelation Multiple space–time metrics @
Multiple space–time tests @
Others @

Space–time statistical models Panel regression models @
S-T autoregressive models & variants @
S-T weighted regression models @

Latent trajectory /multilevel modelsc @
Survival analysis modelsc @ @
Others (e.g., hybrid models) @

Process-based simulation Agent-based models @ @
Cellular automaton @
Spatial Markov models @
Others @

aWe do not provide detail due to decent coverage in Long and Nelson (2013) and space limitations.
bProposed by the authors of this article (nonexistent or rare in space–time analysis literature but available in other fields).
cExisting, but not common in individual movement data analysis literature (popular in other fields).
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(MOEA), and the longest common sequence algo-
rithm (Chen et al. 2011; Long and Nelson 2013;
Kwan, Xiao, and Ding 2014). Other methods allow for
grouping together individuals who have similar space–
time paths or activity density surface (Kwan 1999;
Chen et al. 2011), quantitatively modeling movement
probabilities that incorporate object kinetics (Long,
Nelson, and Nathoo 2014), and creating probabilistic
space–time prisms depicting an individual agent’s daily
movement (Downs et al. 2014). For details about
these quantitative methods, see Long and Nelson
(2013).

Some specific research efforts have focused on
development and evaluation of space–time measures
or algorithms that are “sensitive to person-specific sit-
uations and gender-role constraints” (e.g., Kwan 1998,
211), assessment of the similarity among individual
activity patterns using the sequence alignment method
that was originally developed to analyze DNA sequen-
ces (Shoval and Isaacson 2007; Kwan, Xiao, and Ding
2014), and exploration and visualization of large
space–time trajectory data sets in the GIS software
environment for both human (e.g., Kwan 2004) and
nonhuman agents (e.g., Baer and Butler 2000; Downs
et al. 2014). In parallel with such efforts, individual
movement data analysis also aims at better under-
standing individual people’s activity-travel scheduling
behavior subject to space–time prisms (e.g., Liao,
Rasouli, and Timmermans 2014) as well as revealing
how individual accessibility constraints might factor
into personal or social decision making (e.g., Neutens
et al. 2008). Analytical and visualization methods
have arisen that allow the generalization of a limited
number of typical space–time trajectories within a
large data set (Shaw, Yu, and Bombom 2008). A fur-
ther analysis of such data allows the geo-computation
of real-world accessibility measures by investigating
the maximum travel distance due to multiple con-
straints on individuals in a particular study area (Lenn-
torp 1976; Kwan 2004). The ArcGIS-oriented package
named “Extended Time-Geographic Framework
Tools,” developed by Shaw and associates, aims at
“representing and modeling both physical and virtual
activities as well as the interactions between them.”
This tool is able to visualize and explore spatiotempo-
ral changes among individuals in large data sets
(Shaw, Yu, and Bombom 2008).

To seek understanding about grouped individual
movements, the two most prominent research areas
include space–time statistics that aim to reveal both
space–time point patterns and spatial association of

movement vectors. First, considering that movements
are composed of points with spatial and temporal coor-
dinates, spatial point pattern analysis can be extended
to space–time point patterns. Knox (1964) furnished a
popular significance test for space–time clustering of
point events, whose test statistic is the sum of both
spatial and temporal neighbors. Mantel (1967) pro-
vided another popular test that is calculated as sum of
multiplications of spatial and temporal distances
among point events. Fundamentally, these tests evalu-
ate whether or not point events are significantly differ-
ent from a complete random process in space–time.
Kulldorff (2001) developed a space–time cluster
method extending the spatial scan test. Whereas the
first two statistics are global statistics, the space–time
scan test can detect local clusters using a space–time
moving window that is cylindrically shaped. Signifi-
cance tests for local clustering methods are often
achieved with space–time permutation (Kulldorff
et al. 2005) or bootstrap techniques (Kim and O’Kelly
2008).

Second, spatial association of movement vectors is
used to explore pattern of space–time movements.
Orellana and Wachowicz (2011) investigated
“movement suspensions” (e.g., slow speed movement
vectors) in pedestrian movement patterns. They ana-
lyzed vector segments of movement paths extending
local Moran’s I for vectors rather than paths them-
selves. They found that movement suspensions can be
detected with local Moran’s I and are associated with
places where attractions are located. It is shown that a
vector-based approach can provide useful insights to
investigate activity patterns in space–time (X. Liu,
Yan, and Chow 2015). Spatial association of vectors
has not drawn much attention, however, except for a
few studies (e.g., Y. Liu, Tong, and Liu 2014).

As Long and Nelson (2013) pointed out, space–
time statistics for individual movements have not
been much developed and not even clearly defined.
Statistical aspects currently appear in path similarity
indexes and pattern cluster methods as well as the
probabilistic time geography, but they generally do not
involve a statistical significance test. Obviously,
space–time analysis for individual movements requires
development of inferential statistics, which remains
challenging.

Space–Time Statistical Models

Models of this type refer to the ones that could con-
tribute to explaining or predicting certain space–time
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measures or patterns of moving objects. A current
research frontier in individual movement data analysis
is the so-called probabilistic time geography, which
has arisen due to the understanding that although
points within a space–time prism are accessible, not
all points have an equal probability of being visited
(Winter and Yin 2011; Downs and Horner 2012; Song
and Miller 2014). A number of methods have been
developed to compute these probabilities or space–
time fields (contours), including the use of kernel den-
sity estimation to create density surfaces characterizing
a moving object’s spatial distribution over a fixed time
interval (or space–time discs), random walk or corre-
lated random walk methods that are used with discrete
space and time intervals, Brownian bridges used for
continuous space and time, and voxel-based geocom-
putational approaches (Downs 2010; Downs et al.
2014; Song and Miller 2014). Future research might
revolve around integrating time geography and statis-
tical density estimation to allow better portrayal of
movement over a long time period for objects and phe-
nomenon at various spatial scales (Downs 2010;
Downs and Horner 2012).

It becomes very challenging, however, to predict
relatively precise locations of a certain object over
time using regular regression-based statistical models.
If a modeler is interested in the timing of a certain
event (e.g., transaction) and this timing is correlated
with locational information, then a method named
survival analysis has a great potential to predict the
space and time of the event of interest with relatively
high precision levels.

Survival analysis is also termed event history analysis,
which has been extensively used in public health, soci-
ology, demography (e.g., divorce, marriage, and mor-
tality—thus the name survival analysis), engineering,
and epidemiology (Klein and Moeschberger 1997; An
and Brown 2008). Only in recent decades have a few
pioneer researchers extended this method to spatial
panel data analysis, particularly for analysis of land use
and land cover (An and Brown 2008). A critical con-
cept in survival analysis, the hazard function, offers
unique opportunities for space–time analysis of a cer-
tain event such as land change or individual transac-
tion. The hazard of a certain event is the
instantaneous risk that this change will occur at a time
of interest if the individual is able to survive to that
time point. The hazard can be understood as an intrin-
sic property of any individual object or spatial unit
(e.g., land unit), often defined based on empirical tim-
ing of events and some theoretical assumptions.

Hazard is related to, but conceptually different from,
probability. For instance, hazards might go up and
down, whereas survival probabilities are always nonin-
creasing over time. Given individual movement data,
calculating hazards for all relevant objects is based on
the timing of each event, which switches the time
dimension from a discrete time view in traditional
space–time analysis to a continuous view, which is par-
ticularly useful in modeling transactions or events of
individual objects with precise time stamps (Table 2).

When regressing the hazard of a certain event
(often defined as a function of the time of event)
related to a mobile object against a number of inde-
pendent variables, survival analysis takes into account
temporally changing values of some variables (named
time-dependent variables; a key strength of survival
analysis), where a modeler can use some explicit (e.g.,
x and y coordinates) or implicit (e.g., distances to
known features) locational data as (part of) the inde-
pendent variables. This is how space and time are con-
nected in survival analysis of individual movement
data.

At the same time, survival analysis allows varying
precisions of time measurements for the event of inter-
est: If events are known to occur earlier or later than a
certain time, or within a certain time interval (termed
as left-, right-, and interval-censored time, respec-
tively; An and Brown 2008); survival analysis has
algorithms to account for such data with varying tem-
poral precision levels. Survival analysis has to make
assumptions, however, about the hazards of the objects
or spatial units under investigation (e.g., the well-
known proportional hazard assumption in the Cox
model; see Klein and Moeschberger 1997), which are
sometimes beyond empirical tests. Also, survival anal-
ysis is designed for analysis of qualitative changes
(events). If no event data are available, this method
does not apply.

Most individual movement data-based models
involve small spatial scale and short time intervals,
whereas movements over larger distances and larger
timescales are not well characterized by this type
of continuous tracking and modeling approach (Meen-
temeyer 1989). This limitation might become more
relaxed, however, with technological advances and
decreasing costs of employing these technologies.
Although the time geographic approach is able to
characterize both time and space continuously,6 it is
weak in its ability to address movements at multiple
spatial and temporal scales. Furthermore, it has been
repeatedly shown that “time is a fundamental
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dimension that shapes people’s access to and use of
urban (and many other) opportunities” because they
have many space–time constraints and temporal
rhythms of activities; ignoring or downplaying this
time dimension might lead to misleading or wrong
conclusions (Kwan 2013, 1082). As pointed out by
Long and Nelson (2013), however, “the first and fore-
most challenge” in handling movement data is “how
to effectively characterize time” because unlike some
spatial data sets (e.g., land use and land cover data),
“objects move in both space and time and [spatial
dimension and temporal dimension] cannot be explic-
itly linked” (306) using the existing GIS data formats.
The challenge in individual movement data analysis
also comes from the need for methods that are able to
consider movement as “a function of the environ-
ment” and “are able to quantify interactions between
individuals and with environmental variables” (Long
and Nelson 2013, 311, 312). All of these challenges
point to the need for employing the process-based sim-
ulation approach, which is described next.

Process-Based Simulation

Process-based simulation models focus on local-
level processes and interactions that might give rise to
emerging space–time patterns at aggregate levels.
Among many models of this type, we review agent-
based models (ABMs) that could have a great poten-
tial to address many space–time analysis challenges.
Readers interested in other methods or models of this
type (e.g., spatial Markov models) are referred to
related literature (e.g., Patterson et al. 2009; National
Research Council 2014).

ABMs, or individual-based models in ecological lit-
erature, are a bottom-up methodology that has the
capability to perform space–time analysis. Based on
the object-oriented programming (OOP) paradigm in
computer science, ABMs group operations and data
into modular units called objects (agents), which are
conceptually equivalent to objects in individual move-
ment data analysis. All objects are placed onto a struc-
tured network (Apple Computer 2000), which in
geographical or human–environmental studies would
often incorporate GIS space (e.g., cellular or vector)
and other data layers. In some theoretical space–time
explorations, the structured network could be a two-
dimensional grid (e.g., the torus in Bala and Sorger
2001). The temporal dimension is enabled through an
internal “clock” in the corresponding ABM: For each
“tick,” the time moves one step forward and all agents

and objects can act or change certain attributes
accordingly. The rules and a certain “schedule” that
are programmed in the model control the sequential
unfolding of agent activities over space and time.
With a certain degree of self-awareness, intelligence,
and knowledge of other agents and the environment
(space), agents are often enabled to learn from (or
exert impact on) other agents or the environment,
adjust their own actions, and produce emergent out-
comes (Parker et al. 2003; An et al. 2005).

In a study that aims to understand spatial stratifica-
tion of human capital (education level) in a society,
each family is put in a cell of two-dimensional torus
(Bala and Sorger 2001). Agents of various genera-
tions (representing time) born into a family will
reside in the corresponding cell/family or cell. A cer-
tain agent’s human capital is dependent on his or her
own previous human capital, his or her decision to
work or to obtain further education, and the spillover
effect of human capital in his or her neighborhood.
The authors found that as time goes on, families
(cells) with high human capital continue to accumu-
late more and serve as “nuclei” for nearby families to
raise their human capital even when the simulation
starts from a random spatial distribution of human
capital among families. In this example, the absolute
spacing (e.g., whether the family of interest is in the
corner or near the edge) is not or less important; its
relative space (the neighborhood the family belongs
to) would play an essential role in determining its
future human capital accumulation. On the other
hand, the ABM by Torrens (2014) has objects and
agents with a high level of detailed data (e.g., build-
ings with subsurfaces, foundations, façades; human
agents with skeleton nodes) and resolutions (e.g.,
millimeters in space and fractions of a second in
time). At this level, the space is absolute, which is
important for simulating collision and evacuation
behavior under earthquakes. At higher levels such as
street-scale wayfinding, it is the relative space (e.g.,
corners of two streets, relative location between
buildings) rather than absolute space (exact coordi-
nates on the street) that helps agents to make move-
ment decisions.

We also point out the potential usefulness of ABMs
toward understanding accessibility of urban facilities
and services. Suppose that under an ABM framework,
a modeler has data of interest for a certain community
regarding individual people, the spatially heteroge-
neous and temporally variant environment, interac-
tions between agents, and interactions between agents
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and the environment over a time span of varying gran-
ularity. Using an ABM, the modeler could locate the
people (agents), the parks (objects), and roads
(objects) on a two-dimensional digital environment.
Then he or she could assign attributes, including
movement constraints or possibilities, to these agents
and objects, such as age, race, work hours, and disabil-
ity to people; road congestion hours to roads; and park
hours to parks. Then according to domain knowledge,
he or she can assign rules to the ABM, which might
guide how agents interact with one another and with
the environment. Once the simulation starts, the
agents might stay or move over space along time
(“tick”), often interacting with other agents (e.g., if
you go to the park, I go) or the environment (e.g.,
checking park hours or road congestion). This corre-
sponds to “the sequential unfolding of their activities
over time” (Kwan 2013, 1082), which represents how
ABMs integrate space and time in the “flow
perspective” (Dijst 2013, 1060). With individual
movement data collected from the simulation, a vari-
ety of time geography (or more broadly individual
movement data analysis) methods or metrics can be
used, such as space–time paths, space–time prisms, or
time-geography density estimation (Downs 2010) for
various purposes.

Clearly, ABMs have the capability to incorporate
“interactions between individuals and with environ-
mental variables” (Long and Nelson 2013, 312), to
avoid potential “erroneous conclusions when time is
ignored” (Kwan 2013, 1082), and to include various
levels of temporal granularity—for example, traffic
congestion at a road segment might last ten minutes,
and a certain park might be open ten hours a day
(Laube and Purves 2011). Therefore, ABMs have the
potential to become a major tool in “analyzing the
complex relationships among human space–time tra-
jectories, racial segregation, environmental exposure,
and accessibility” (Kwan 2013, 1083).7 Although
they have many other strengths, such as the capabil-
ity to represent feedback and heterogeneity, the
potential to encapsulate high-resolution spatial and
temporal detail (Torrens 2014), and the power to
include human decision making (Parker et al. 2003;
An 2012), ABMs have several known weaknesses in
relation to space–time analysis. ABMs could be very
data demanding and sometimes too complex without
offering much additional insight. It is also difficult to
verify such models when path dependence, multifinal-
ity, and equifinality exist (National Research Council
2014).

Spatial Panel Data Analysis

A wide variety of space–time analysis studies result
from the application of analytical and statistical tech-
niques that are applicable to spatial panel data. We
classify and review the methods and models for spatial
panel data analysis also in three categories: pattern
revelation, space–time statistical models, and process-
based simulation (Table 2).

Pattern Revelation

One important research line is space–time analysis
of exploratory nature, which attempts to detect, quan-
tify, visualize, and link trends in both space and time
using novel methods. The Space–Time Analysis of
Regional Systems (STARS) package allows for explor-
atory analysis of spatial panel data (Rey and Janikas
2006). In addition to offering a platform to qualita-
tively view spatial data over time, STARS offers geo-
computational methods that allow for space–time
analysis, including global and local Moran’s I, meas-
ures of inequality (the Gini coefficient), and Markov
techniques (Rey and Janikas 2006). Temporal query
and dynamic navigation in a GIS environment repre-
sents another useful line of research that shows great
promise (e.g., C. Lee, Devillers, and Hoeber 2014).
The ArcGIS-oriented package “Extended Time-Geo-
graphic Framework Tools” mentioned earlier is also
able to generate aggregate-level metrics and visualiza-
tion graphs (Shaw, Yu, and Bombom 2008).

Another research area in this category includes
attempts at identifying spatiotemporal clusters or hot-
spots. The Barton and David test can be used to find if
spatial patterns of events vary by temporal cluster,
whereas the Knox test is used to identify space–time
clusters by finding if events in one space–time window
differ from the expected amount given the total num-
ber of cases and range of time of these events. The
Mantel Index finds correlation between distance and
time intervals (Levine 2004). Another method is to
develop models or measures of how temporal rates or
risk factors vary over geographic space. Various dimen-
sions of clustering, including the frequency, duration,
and intensity of events, can be assessed using local
indicators of spatial autocorrelation (LISA; Anselin
1995), various entropy-based indexes (Leibovici et al.
2014), or space–time kernel density (Delmelle et al.
2014). Complementary to such indexes, probability
density maps of space–time hotspots based on large
quantities of individual-level movement data (e.g.,
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Global Positioning System [GPS] measurements;
Scheepens, van de Wetering, and van Wijk 2014;
Scholz and Lu 2014) provide unique knowledge about
activity patterns. Along this research frontier, other
threads of effort also advance space–time analysis,
such as the work on visualizing and analyzing regional
economic inequality over time (e.g., Ye and Carroll
2011), development of LISA time paths (Rey, Janikas,
and Smirnov 2005), and exploring space–time covari-
ance structures (Guttorp, Meiring, and Sampson
1994). In a related study, spatial groupings are
observed for a number of temporal scales to tease out
climatic variations from seasonal fluctuations (Rou-
hani and Wackernagel 1990). In addition to finding
clusters, assessing changes in individual feature loca-
tions in a GIS environment can have analytical utility.
The spatio-temporal moving average and correlated
walk analysis enables tracking of the movement of the
mean location of an event or feature and allows pre-
diction of the location and time of a similar event or
feature in the future (Levine 2004).

We do not elaborate on software tools that mainly
focus on spatial analysis because of space limits as well
as our equal emphasis on the ability to handle time
variability. It is worth mentioning, however, that soft-
ware development is one of the top priority areas for
space–time analysis. In addition to several noncom-
mercial packages such as STARS (open source) men-
tioned earlier and Crimestat (freely distributed for
educational or research purposes but owned by Ned
Levine and Associates), which has tests for space–time
clustering, diffusion, and interaction (Levine 2004), a
number of space–time statistical techniques in this
general category are included in commercial GIS.
Similar to the space–time paths of time geography,
ArcGIS allows the visualization of events in three
dimensions, with the time of an event being displayed
vertically (ESRI 2013). In addition, space–time hot-
spot analysis (LISA; Getis-Ord Gi*) can be con-
ducted by defining a spatial weights matrix based
on time (ESRI 2013). The Spatial-Temporal Analy-
sis of Moving Polygons (STAMP) program, imple-
mented as an ArcGIS toolbar, can generate graphs
and measures (e.g., size and direction of moving
polygons) and summarize space–time histories (Rob-
ertson et al. 2007). Also, the field of geovisualiza-
tion has a close connection with space–time
analysis, but we do not include it in this article due
to space limits. For a nice overview, interested
readers can refer to Dykes, MacEachren, and Kraak
(2005) and N€ollenburg (2007).

Space–Time Statistical Models

To find out the mechanisms behind spatial panel
data or make predictions, space–time analysts or mod-
elers often use panel regression models. The term panel
regression models refers to any regression models that
make use of panel data, which include space–time
autoregressive models (often with no exogenous varia-
bles), multivariate space–time regression models
(with exogenous variables), and a number of variants
(Table 2). One prominent feature that distinguishes
panel regression models from standard regression
models lies in their consideration of (1) temporal auto-
correlation (i.e., “serial dependence” in spatial econo-
metrics; see Elhorst 2012), (2) spatial autocorrelation,
or (3) both spatial and temporal autocorrelation.
Econometricians have made a substantial contribution
to panel regression models (e.g., fixed and random
effects models) in the last couple of decades or so (e.g.,
L. Lee and Yu 2010; Elhorst 2012). Both the so-called
static (not allowing time lag terms as explanatory vari-
ables) and dynamic (allowing both space and time lag
terms) spatial panel data models are of particular
importance to space–time analysis. We hasten to stress
that the reviews by L. Lee and Yu (2010) and Elhorst
(2012) about panel regression models are comprehen-
sive and updated, and readers interested in more detail
(e.g., the specification of seven types of dynamic spa-
tial panel data models) are referred to these articles.
Next we bring forth several prominent issues that per-
tain to space–time analysis in geographic and environ-
mental applications.

Worthy of mention is the rich set of autoregressive
models, including space–time autoregressive (STAR),
space–time moving average (STMA), space–time
autoregressive moving average (STARMA), and
space–time autoregressive integrated moving average
(STARIMA) models. These models are fundamentally
extensions of autoregressive moving average (ARMA)
model for univariate time series to space–time domain
(Cliff et al. 1975). These models often assume that
the space–time processes can be considered as station-
ary (or near stationary) in both space and time. These
STARMA models are frequently used for forecasting
purposes (e.g., Cliff et al. 1975; Pfeifer and Bodily
1990). In an example for space–time prediction of traf-
fic flow in a road network, measurements of traffic flow
are taken at multiple time points at a number of mea-
surement stations within a road network (Kamariana-
kis and Prastacos 2005). The authors show that each
measurement at a certain site and time is modeled as a
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linear function of the three previous measurements at
this site, a weighted average of the measurements
taken from its first-order neighbors at the previous
time, a weighted average of the measurements taken
from its second-order neighbors at the previous time,
the prediction error that was made at the previous
time, and a random error.

Space–time analysis frequently uses panel regression
models with exogenous variables (Table 2). To avoid
creating models with a large number of parameters
that overfit the data and thus lose generality, and due
to data limitations (e.g., sparse data over space or
time), these models often decompose the dependent
variable of interest (or some transformation of it) into
some function (e.g., linear combination) of site-depen-
dent, time-dependent, or site–time interaction terms
(e.g., Assu~nçao, Reis, and Oliveira 2001; Lophaven,
Carstensen, and Rootz�en 2004; Natvig and Tvete
2007). In instances with high complexity or uncer-
tainty as well as data collection difficulty (e.g., spare
data over space or time), a latent space–time process
can be assumed to underlie the observed data that are
also subject to some random, unknown perturbation.
Cheng, Wang, and Li (2011) proposed a hybrid model
that uses an artificial neural network model to extract
a global, generic trend and a statistical model to
extract a local, stochastic trend in the “space–time
series” temperature data collected from 137 Chinese
meteorological stations.

Whereas space–time panel models are commonly
estimated with maximum likelihood–based estimation
methods (e.g., Baltagi 2005; Yu, de Jong, and Lee
2008), Bayesian approaches have also been used fre-
quently in various areas including epidemiology
(Assu~nçao, Reis, and Oliveira 2001), climatology
(Furrer et al. 2007), and natural disasters (Natvig and
Tvete 2007). Using the Markov chain Monte Carlo
approach, Bayesian methods allow flexible model spec-
ifications to reflect complex space–time processes.
Worthy of mention is the hierarchical Bayesian
approach in space–time analysis (Wikle, Berliner, and
Cressie 1998). The phenomenon or process under
investigation might be too complex, and decomposing
it into several hierarchical processes or components
should help conceptually and computationally. In
modeling ozone level at a certain site and time, Nail,
Hughes-Oliver, and Monahan (2011) decomposed the
ozone level into two components of local emissions
and regional transport, and each is modeled differ-
ently. The Bayesian approaches are often computa-
tionally intensive (Biggeri and Martuzzi 2003). It is

critical to choose an appropriate a priori conditional
distribution, and more research is needed in this
regard.

Several relatively new methods to model spatial
data have been extended to the space–time analysis
context. Extended from the geographically weighted
regression (GWR) framework, the geographically and
temporally weighted autoregressive (GTWAR) model
developed by Wu, Li, and Huang (2014) is a promising
approach to handling both temporal nonstationarity
and spatial autocorrelation simultaneously. The
GTWAR model creatively forms a spatiotemporal dis-
tance (a linear combination of both spatial and tempo-
ral distances) for all of the space–time points and
develops a spatiotemporal weights matrix that
accounts for both spatial and temporal laggings. Then
through a unique estimation technique, GTWAR can
better fit the space–time data and subsequently gener-
ate better predictions. Another notable method is the
eigenvector spatial filtering (ESF) technique that uses
eigenvectors generated from a spatial weights matrix
(Griffith 2003). Extending the ESF technique to a gen-
eralized linear mixed model (GLMM) structure, this
method accounts for spatial structure with eigenvec-
tors and temporal structure with random effects (Chun
and Griffith 2011; Chun 2014).

Latent trajectory models. Another related set of
methods are the so-called latent trajectory models
(LTMs), which are also termed structural equation
growth curve models or latent growth curve models
(LGMs). LTMs are powerful in modeling longitudinal
data, in which repeated measurements are observed for
some outcome variable(s) over time (Guo and Hipp
2004). Conceptualized and expressed under the struc-
tural equation modeling (SEM) framework, LTMs are
widely used in social and environmental sciences.
Using patterns of change (not necessarily monotonous
increase or decrease; see Bollen and Curran 2006,
108) in the response variable (y) as latent variables,
LTM estimates complex causal relationships or plausi-
ble pathways among these change patterns and a set of
independent variables (Preacher et al. 2008). LTMs
are useful in space–time analysis because it is the tra-
jectory of each spatial unit over time that is of primary
interest. By exploring individual trajectories, space–
time analysts could obtain firsthand insights into the
temporal trend of the phenomenon of interest. When
such trajectories are regressed against time, relevant
time variants and covariates, we can obtain knowledge
about what environmental, socioeconomic, and geo-
graphic factors could shape each trajectory in terms of
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the beginning points, changes in direction, or magni-
tude of change in such trajectories (An et al. forth-
coming). The drawback of LTMs in space–time
analysis is the assumption that the temporal change
pattern, or time trajectory, of the response variable fol-
lows a predetermined mathematical function such as a
linear or quadratic function of time, which in some
instances might not be practical.

Multilevel models (MLMs) and LTMs are similar in
many aspects, and sometimes they might give equiva-
lent results. Therefore, we do not elaborate on MLMs
but refer readers with interest in MLMs to Browne and
Rasbash (2004), Subramanian (2010), and Goldstein
(2011). They each lack some abilities of the other,
however: For instance, traditional LTMs cannot
accommodate more than two hierarchical levels as
MLMs can, whereas MLMs do not allow model param-
eters to serve as predictors of other variables in the sys-
tem (Preacher et al. 2008). It is possible to combine
the strengths of both and develop multilevel latent
trajectory models (M-LTMs), for space–time analysis
as well as for more generic analysis of longitudinal,
multilevel data. This method has rarely been used in
space–time analysis to the best of our knowledge, with
a small set of exceptions (e.g., Johnston, Jones, and
Jen 2009; Elhorst 2012; An et al. forthcoming).

Worthy of mention is that the survival analysis
models presented earlier can also be used in spatial
panel data analysis. The difference is that when used
in spatial panel data analysis, survival analysis aims to
understand the change of state in cross sections rather
than in individual objects dwelled on these cross
sections. For brevity considerations, we skip this topic
and refer readers to An and Brown (2008) and An
et al. (2011).

Process-Based Simulations

Next we turn to a set of simulation models that can
be employed in space–time analysis. These models
focus more on relatively lower level processes that gen-
erate emergent space–time patterns (National
Research Council 2014). Here we focus on spatial
Markov chains and cellular automata (CA). ABMs, as
reviewed earlier, are also applicable to spatial panel
data analysis (Table 2), even though the modeler is
more interested in using an ABM to predict or explain
the observed spatial patterns (e.g., habitat or land use
and cover at discrete times) rather than in time paths
or movement patterns of individual agents. We skip
ABM in this section for brevity, though, while

pointing out some literature about using ABMs in this
manner (Parker et al. 2003; An et al. 2005; Brown
et al. 2005; Brown et al. 2008; An 2012; An et al.
2014).

Spatial Markov chains models. A traditional nonspa-
tial Markov chain process is a process in which all
cross sections under the system of interest belong to a
number of states and can change states under some
stationary transition probabilities. The state of a cross-
section is a function of only its previous state and tran-
sition probability and, ultimately, the whole system
converges to a steady state as the system of interest
progresses over time stamps that correspond to calen-
dar time intervals. Transition probabilities, compiled
in matrix format, are obtained by assessing historic
conversions between transition types. Markov models
thus enable calculation of expected number of each
transition event for the time elapsed before the subse-
quent time stamp. As an application in spatial con-
text, spatial Markov chain models have individual
cells/pixels or other spatial units (e.g., counties, states)
as cross-sectional units, each with spatial coordinates
corresponding to an area in space. What distinguishes
them from regular nonspatial Markov chains is the
consideration of spatial dependence (e.g., through spa-
tial lag or spatial weights matrix; Anselin 2003) among
nearby units. Markov chain models are able to repre-
sent changing temporal dynamics and spatial patterns
of the phenomenon of interest such as land changes
(National Research Council 2014) or regional income
changes (Rey 2001; Le Gallo 2004).

Spatial Markov chain models offer a logically sim-
ple methodology for exploring patterns of spatiotem-
poral changes, with a number of drawbacks (An and
Brown 2008; Iacono et al. 2012). Primarily, the origi-
nal assumption of stationarity (in time and space)
might not hold true in many applications unless modi-
fications are adopted (Brown, Pijanowski, and Duh
2000). Like other types of models assuming temporal
stationarity, Markov models are appropriate within a
relatively short time span and sometimes suffer from
the problem in relation to annualizing the correspond-
ing Markov matrix (Takada, Miyamoto, and Hasegawa
2010). In addition, traditional Markov models give no
insight into causality or involved processes. In many
studies, some of these drawbacks have been overcome
through the integration of other simulation techni-
ques, such as CA to spatially allocate transition areas
(National Research Council 2014) and Monte Carlo
simulation to calculate probabilities or parameter val-
ues in Bayesian models (e.g., Furrer et al. 2007).
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Cellular Automaton Models. As mentioned erlier,
Markov models allow change of cell status in a certain
stochastic manner, and transition probabilities (often
calculated from empirical time series data) are used to
control the related changes. Transitions are largely
independent of the surrounding neighborhood, how-
ever. This might limit the application of Markov mod-
els in a world with spatial dependence. CA models are
able to model space–time patterns through represent-
ing the environment on a cellular basis and letting the
cells update at each time step (“tick”). In updating cell
state, the effects of spatial interactions on cell status
transition are specifically considered: The future state
of a cell is set as dependent on its current state and
that of cells within a predefined neighborhood around
the cell. An essential characteristic of CA models is to
repeatedly calculate the related algorithms or heuris-
tics and update and report the status of all cells at each
time.

A number of empirical (Clarke, Hoppen, and Gay-
dos 1997; Messina and Walsh 2001; He et al. 2005)
and theoretical (e.g., Conway game of life, Gardner
1970) applications of CA models are available in the
literature. From a space–time analysis perspective, CA
models are limited in a number of ways; for example,
they lack capability to handle human decision making,
and it is difficult to calibrate and incorporate rules that
extend beyond the status of the cell under consider-
ation and its neighboring cells. Such difficulties might
be eased, however, as new CA calibration methods are
developed, such as those based on genetic algorithms
(Cao et al. 2014).

Other Related Topics

This article emphasizes space–time data, that is,
data explicitly with both spatial and temporal stamps,
as well as models with tight space–time coupling. For
these reasons, we do not elaborate on traditional spa-
tial data analysis measures (e.g., Moran’s I, LISA) and
models (e.g., logistic regression, artificial neural net-
work). There exists a vast literature for this topic (e.g.,
Fischer and Getis 2010). This, however, by no means
depreciates these essential models. On the contrary,
many such “traditional” models can be adapted or
extended to analyze space–time data. For instance,
logistic regression is more oriented toward analyzing
cross-sectional data (Wang et al. 2013). If the
dependent variable is switched from original pres-
ence–absence (e.g., of agriculture) format at one time

point to nominal trajectories over time (e.g., forest
! forest ! agriculture, forest ! agriculture ! agri-
culture, etc.; Mertens and Lambin 2000), or presence–
absence data are grouped into predetermined time
intervals (Doherty et al. 2014), logistic regression is
also able to reveal some temporal variability of the
process. See An and Brown (2008) for the drawbacks
of this type of loose space–time coupling.

Also due to space limitations, we do not elaborate
on several related issues. First, various model verifica-
tion indexes and methods, including the ones for map
comparison (Hagen 2003; Pontius, Peethambaram,
and Castella 2011) and the variant–invariant method
(Brown et al. 2005), are very useful in space–time
analysis as they provide an approach to examining the
closeness between predicted and observed outcomes.
Second, a growing volume of literature about historical
and narrative GIS (Nakaya 2013; Yuan, McIntosh,
and DeLozier 2015) has not been included in our
review due to our focus on quantitative methods. The
contribution from this field might be substantial in
space–time analysis, however. Third, the previously
listed models or methods are by no means exclusive or
nonoverlapping—in many instances, hybrid models
are employed in understanding space–time dynamics
of the system of interest. Fourth, some disciplinary
space–time models, such as the diffusion models in the
form of differential or difference equations that
explain rainfall patterns (Polyak, North, and Valdes
1994), are not included in this article because such
models represent specific physical processes and are
not likely employed in space–time analysis in other
disciplines.

Discussion

Human experience can only occur in, and through,
movement over space and time—there is no absolute
stationarity in human realities. Things happen one by
one, and it is this sequence that might give rise to the
sense of time (N�u~nez and Cooperrider 2013). Time
exists, as Einstein illumined: “The only reason for time
is so that everything doesn’t happen at once.” Analo-
gously things happen here and there, and we would
add, “The only reason for space is so that everything
doesn’t happen everywhere.” Only when the nexus of
time and space, and movements through such time
and space, is understood can a better comprehension
of the human condition and many of its true complexi-
ties become possible. Space–time analysis, especially
time geography, helps us build this nexus.
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Integration of Space and Time

Even with a long history and intellectual origin
from many other disciplines, the dual nature or dichot-
omy of space and time still besets space–time analysis.
With the advent of contemporary advanced technolo-
gies, a growing number of challenges and opportunities
emerge. One big challenge is as the “real-time space-
time integration” (Richardson 2013), which has
become increasingly possible due to (1) the explosion
of real-time space–time data using GPS- and GIS-
enabled devices, (2) the advances in mobile comput-
ing techniques and facilities including geospatial cyber
infrastructure, and (3) the development of tools to
analyze, model, and visualize space–time data. One
methodological frontier is the ABM framework, which
has a substantive potential to elegantly address many
of the aforementioned challenges. Within the ABM
framework, each agent (object) can move to or stay at
any accessible location at any time, providing huge
opportunities for real-time space–time integration.
The survival analysis approach, when regressing the
survival time–based hazards against time-variant
(including locational data) and time-invariant varia-
bles, is also potentially able to link space and time
data at a relatively high precision level.

The usefulness of these models in integrating space
and time, to a large degree, however, hinges on what
space–time data are available in what format, which
connects to the challenges related to space–time data
models. The last two decades have witnessed develop-
ment and application of many innovative data models,
such as the event-based space–time data model (Peu-
quet 1994), the object-oriented data model (Frihida,
Marceau, and Th�eriault 2002), the field vector–based
approach (Bothwell and Yuan 2010), and the space–
time data models for raster data (Zhao, Shaw, and
Wang 2014). These existing space–time data models
are often limited to specific situations such as data for-
mat and geometry type. Development of space–time
data models with higher levels of flexibility and adapt-
ability would advance space–time analysis and, more
broadly, GIScience.

Span and Granularity of Time

Current geography (GIS in particular) has a power-
ful capacity to handle spatial heterogeneity, but tem-
poral variability has not been well addressed (Peuquet
and Duan 1995; Yuan 1999; An and Brown 2008;
Long and Nelson 2013; Yi et al. 2014). It is laudable

that remote sensing data have been increasingly
employed in relevant space–time analysis studies (e.g.,
Yi et al. 2014). Nonetheless, choosing the time span
and temporal granularity of data collection is largely
driven by data availability or convenience of data col-
lection rather than by domain knowledge, theory, or
insight into the process(es) of interest. Seldom have
researchers asked questions about the validity of time
span or temporal granularity (e.g., from instantaneous
to interval to episodal to global scale; Laube et al.
2007) regarding data collection or analysis. Throwing
such data to conventional spatial panel data analysis
may not reveal the related patterns or mechanisms
behind the data, despite methodological developments
to handle flexible temporal granularity such as contin-
uous time modeling (Oud et al. 2012). One promising
approach, especially for exploratory analysis or data
mining, is to employ LTMs. If the temporal trajecto-
ries of all relevant cross-sectional units are random or
chaotic or coefficients for some time parameters (e.g.,
time or time square) are insignificant, this might be a
sign of inadequate time span or granularity that is too
coarse and we should ask further questions: Is the time
span too short such that any temporal trend cannot be
captured by our spatial panel data? Is our data collec-
tion frequency (temporal resolution) too coarse such
that some temporal patterns (e.g., periodicity) in the
process of interest are overlooked?

In many data collection instances, coarse granular-
ity of time is unavoidable due to technological (e.g.,
Landsat Thematic Mappers 4 and 5 had a sixteen-day
revisit cycle), financial, administrative (e.g., every ten
years for census data), or people power limitations.
When studying discrete or qualitative events at indi-
vidual or aggregate (cross-sectional) levels, survival
analysis models have great advantages in making data
of coarse granularity more useful. This advantage is
based on the capability of survival analysis in handling
censored data, which deserves more attention from
space–time analysts or modelers. Survival analysis
models are useful not only for spatial panel data but
also for event or transaction data about individual
objects (Table 2). Survival analysis, by its very nature,
is a method dealing with identifiable and independent
objects, whereas what is presented in An and Brown
(2008) and An et al. (2011) is its modified version
used in analyzing spatial panel data. One intriguing
dimension of survival analysis is that we could record
data about (survival) time, location (e.g., x and y coor-
dinates), and the environment as continuous (or very
fine granularity if discrete) attributes of the objects
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under consideration. When an event or transaction
happens at time t, we can link the event with the data
of the object itself, of other objects, and of the envi-
ronment also at time t (or t ¡1) through a set of time-
dependent variables. Therefore survival analysis mod-
els deserve more effort in individual movement data
analysis, especially in dealing with event and transac-
tion data.

Visualization and Space–Time GIS

Geographic research has a long tradition of using
graphical representations for various purposes,
including understanding spatial patterns of geograph-
ical phenomena, choosing an appropriate modeling
method, and evaluating model performance. Space–
time analysts, with no exception, have strived to
effectively visualize space–time data. As an early
example, the concepts of time geography are effi-
ciently described with visualization tools including
space–time cube, space–time prism, and space–time
path (H€agerstraand 1970). Also, Tobler’s (1970)
effort to visualize the process of urban growth in the
Detroit region with map animation furnishes another
example.

The development of space–time visualization has
heavily depended on GIS and geovisualization, which
provide conceptual frameworks and practical tool sets
to deal with space–time data. Geovisualization could
provide guidelines on how the movement patterns of
individuals should be effectively visualized and ana-
lyzed in time geographic research, and these guidelines
are often implemented in a GIS environment (Kwan
and Lee 2004; Ren and Kwan 2007). Especially, a
three-dimensional GIS environment is widely used to
explore space–time patterns such as space–time
cube (Kraak and Koussoulakou 2005). Also, the
space–time kernel density analysis extensively uses
three-dimensional GIS in its data processing and out-
put visualization (e.g., Delmelle et al. 2014). They
also provide tools to track locations and states of
event-based geographical phenomena, which can be
coupled with GPS devices (e.g., Dodge, Laube, and
Weibel 2012).

It has still been very challenging, however, to
implement geovisualization in a GIS environment.
According to Goodchild (2013), discussing the
functions of “a space–time GIS (STGIS) that uni-
fies the functions needed to capture, store, analyze,
visualize, model, and archive space–time data”

(1074), many essential tools for space–time analysis
are not available in a GIS environment. Especially,
process-based simulation tools including CA and
ABM are still very limited. Also, dealing with
tracking or individual movement data (e.g., GPS
data) is largely isolated from main GIS modules.
He concluded that STGIS is not likely to emerge
in the near future. Nevertheless, GIScientists are
making rapid progress in various areas, including
dealing with a complex structure of space–time data
(e.g., Yuan 1999), using different space–time units
(e.g., Downs et al. 2014), and implementing more
tools in a GIS environment (Rey and Janikas 2006;
Shaw, Yu, and Bombom 2008). We expect that
more effort will be devoted to development of
STGIS, which might greatly advance space–time
analysis.

Analyzing Big Data

It has been increasingly recognized that with
rapid advances in modern information and other
related technologies, data are coming from virtually
everywhere: sensor-gathered land cover or climate
patterns, cancer genome sequences, digital photos
and videos, posts on social media, online transac-
tion records, cellular phone GPS signals, and so on,
at the magnitudes of terabytes (1012 bytes) or peta-
bytes (1015 bytes). Such data are often character-
ized by four Vs: volume (large scale), velocity
(streaming data over time), variety (different forms
of data), and veracity (varying uncertainty in data)
according to IBM. The advent of such “mountains
of data” (Marx 2013), or big data, is revolutionizing
data collection, storage, processing, transfer, visuali-
zation, analysis, and interpretation in many aca-
demic, industrial, and commercial ventures. Big
challenges are also arising in many disciplines—
with no exception in GIScience (e.g., Kwan and
Neutens 2014)—such as close coupling between big
data and tools (e.g., they should talk to one
another), hardware and software sharing (e.g.,
Hadoop open source software framework), high-per-
formance computing (e.g., cloud computing, parallel
computing), software stability and longevity (e.g.,
some software tools crash too often), and develop-
ing big data protocols and standards (e.g., data can
be shared and used by other people).

As mentioned earlier, GIScientists have started to
consider or meet the challenges in big data (big space–
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time data in particular), such as developing STGIS
(Goodchild 2013) to better address the velocity
dimension of big data and open source software pack-
ages (e.g., STARS; Rey and Janikas 2006) to enable
software sharing. Nonetheless, it is worth pointing out
that most of the methods, algorithms, and packages
reviewed here are oriented toward regular data rather
than big data—for example, they are often loaded or
installed on a local computer and have seldom been
exposed to cloud computing (for exceptions, see Tang
and Wang 2009; Tang, Bennett, and Wang 2011) or
subjected to meaningful tests on big space–time data
in terms of theoretical validity, stability, efficiency,
and applicability. On the other hand, big data (big
space–time data in particular) could bring forth some
advantages; for example, giving researchers more free-
dom to select a subset of data to avoid spatial autocor-
relation without concerns about small sample size
(An et al. forthcoming). Overall, big data do provide
challenges, as well as opportunities, to GIScientists in
terms of data science theories or frameworks, data
models and standards, fast-computing techniques, and
efficient methods, algorithms, or packages to extract
information from data mining.

Conclusion

We present a comprehensive typology (Table 2),
intending to synthesize the major data types as well as
the methods appropriate for these data types in space–
time analysis. We believe that this typology contrib-
utes to the continued advance of space–time analysis
through, for example, stimulating exploration of other
data models and types or methods and extending
methods to nontraditional use domains. Under this
typology, we hope to provide an overview of space–
time analysis, especially about what methods are
available, which are possible and promising, and what
their strengths and caveats are, with a focus on those
that are (potentially) useful in geographic and
environmental applications. Such efforts could help
space–time analysts or modelers, especially novice
ones, to grapple with the complexities in space–time
analysis, such as choosing the appropriate temporal or
spatial scales and picking the most reasonable methods
or tools.

According to this review, it is worthwhile point-
ing out a few future directions in space–time analy-
sis. First, improved space–time integration will and
should continue to be an exciting research frontier,

and several promising methodological frameworks
(including ABM and survival analysis), along with
innovative data models, should receive adequate
attention to handle both individual movement data
and spatial panel data, especially in the era of big
data. Effort should be made both within GIS
through, for example, developing space–time GIS
or STGIS (Goodchild 2013) and outside GIS given
the difficulties of “representing the temporal
domain within GIS” (Long and Nelson 2013, 312).
Second, vigorous frameworks and theories for build-
ing a reasonable time dimension and directing
space–time data collection and analysis are still in
dire need. Various disciplines, such as sociology,
political science, land change science, GIScience,
psychology and behavior science, and complexity
science, could take the lead in this direction and
bring us closer to a “science of integration” (Good-
child 2013, 1073). Particularly, complexity science
might play an important role because of its
strengths in dealing with feedback, heterogeneity,
time lag, path dependence, multifinality, and equi-
finality, which are common in complex systems
(O’Sullivan 2004; J. Liu et al. 2007; An 2012;
National Research Council 2014). For instance,
when modeling human movement and mobility in
an ABM, theories in psychology or behavior sci-
ence should help developing rules about their path-
taking or other decisions. Third, space–time analy-
sis should contribute to increasingly recognized big
data science in terms of providing visualization,
analytical, and simulation tools. The panel regres-
sion and simulation models reviewed in this article
should be very helpful in this regard. One contribu-
tion of this article is to “borrow” (from other disci-
plines) and propose several methods, including
latent trajectory models and survival analysis mod-
els, for the arena of space–time analysis. Fourth and
last, space–time models can be based on either
absolute or relative conceptions of space–time8

even though most of the space–time analyses,
including the so-called process-based models like
ABMs (except the cases in Bala and Sorger 2001;
Torrens 2014), largely rely on the absolute concep-
tion of space and time. It is worth investing effort
in developing models that work with relative space,
time, or both or models that have both absolute
and relative space–time representation. Such mod-
els can provide some relatively “fuzzy” solutions to
questions of interest. In many instances, aiming to
acquire precise space or time location might
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warrant unnecessary, huge amounts of time and
effort, although such high precision is not very
useful.

It is very difficult, if not impossible, though, to give
a complete and objective (no personal preference or
bias) list of all space–time analysis methods or models
used in geographic, environmental, or other related
research. It is our hope that this article might synthe-
size the major achievements in the space–time analysis
arena, point out areas for future research, and stimu-
late interest and effort in this promising scientific field.
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Notes
1. We consider geographic space only in the context of

this article. Other dimensions of space, such as informa-
tion space in relation to channel capacity, entropy, and
information gain (Shannon and Weaver 1964), are not
considered.

2. The term distance, unless otherwise specified, refers to
the Euclidean distance in this article, among many
other alternatives such as the least cost path, Manhat-
tan, and network distances.

3. Space–time cube can be also used in representing, map-
ping, and understanding the arts and humanities (e.g.,
Travis 2014).

4. For this set of key words, if “title” is chosen, 618 records
are returned, representing 36 percent of the 1,723
records returned by choosing “topic.”

5. As mentioned later in the Conclusion and Discus-
sion, our search is based on Web of Knowledge alone
and does not include all publications in the relevant
disciplines. For instance, our search has found sixty-
seven papers in social sciences; under the same
search parameters, 102 papers published in scholarly
peer-reviewed social science journals were returned,
using the search engines of Communication and

Mass Communication Complete (CMCC) and Psy-
cINFO (Psychology).

6. Here the word continuously is not used in the strict
mathematic sense but implies that people’s movement
can be potentially tracked in very fine spatial and tem-
poral resolutions.

7. ABMs are also powerful in analyzing other nonhuman
individual movement data. See Tang and Bennett
(2010) for a nice review of agent-based modeling of ani-
mal movement.

8. In addition to the dichotomy of absolute versus relative
space (or absolutism vs. relationalism), useful dimension
for space–time data is the dichotomy of realism versus
idealism, which refers to whether space–time or objects
are mind-independent (e.g., physical objects) or mind-
dependent (e.g., abstract constructs). See more detail in
Yuan, Nara, and Bothwell (2014).
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