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Agent-Based Modeling in Coupled Human
and Natural Systems (CHANS): Lessons

from a Comparative Analysis
Li An,∗ Alex Zvoleff,∗ Jianguo Liu,† and William Axinn‡

∗Department of Geography, San Diego State University
†Center for Systems Integration and Sustainability, Michigan State University

‡Survey Research Center, University of Michigan

Coupled human and natural systems (CHANS) are characterized by many complex features, including feedback
loops, nonlinearity and thresholds, surprises, legacy effects and time lags, and resilience. Agent-based models
(ABMs) are powerful for handling such complexity in CHANS models, facilitating in-depth understanding of
CHANS dynamics. ABMs have been employed mostly on a site-specific basis, however. Little of this work provides
a common infrastructure with which CHANS researchers (especially nonmodeling experts) can comprehend,
compare, and envision CHANS processes and dynamics. We advance the science of CHANS by developing
a CHANS-oriented protocol based on the overview, design concepts, and details (ODD) framework to help
CHANS modelers and other researchers build, document, and compare CHANS-oriented ABMs. Using this
approach, we show how complex demographic decisions, environmental processes, and human–environment
interaction in CHANS can be represented and simulated in a relatively straightforward, standard way with
ABMs by focusing on a comparison of two world-renowned CHANS: the Wolong Nature Reserve in China and
the Chitwan National Park in Nepal. The four key lessons we learn from this cross-site comparison in relation
to CHANS models include how to represent agents and the landscape, the need for standardized modules
for CHANS ABMs, the impacts of scheduling on model outcomes, and precautions in interpreting “surprises”
in CHANS model outcomes. We conclude with a CHANS protocol in the hope of advancing the science of
CHANS. Key Words: agent-based modeling, coupled human and natural systems (CHANS), cross-site comparison,
land use and land cover change, modeling protocol.
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Los sistemas humanos y naturales acoplados (CHANS, por el acrónimo inglés) se caracterizan por muchos
rasgos complejos, incluyendo giros de feedback, no linealidad y umbrales, sorpresas, efectos legados y retrasos de
tiempo, y resiliencia. Los modelos basados en agente (ABMs) se muestran como potentes en el manejo de tales
complejidades en los modelos CHANS, lo cual facilita un entendimiento a profundidad de la dinámica CHANS.
Sin embargo, los ABMs han sido empleados principalmente con base en la especificidad de sitio. Muy poco de
este trabajo proporciona una infraestructura común con la cual los investigadores de CHANS (especialmente
los expertos que no utilizan modelos) pueden comprender, comparar y visualizar los procesos y dinámica de los
CHANS. Nuestra contribución al avance de la ciencia de los CHANS es el desarrollo de un protocolo orientado
a los CHANS basado en el resumen, conceptos de diseño y detalles (ODD) de estructura para ayudar a los
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724 An et al.

modeladores de CHANS y otros investigadores a construir, documentar y comparar los ABMs de orientación
CHANS. Utilizando este enfoque, demostramos cómo pueden representarse y simularse en CHANS complejas
decisiones demográficas, procesos ambientales e interacción humano-ambiental, dentro de una visión estándar
relativamente directa con los ABMs, centrando la atención en una comparación de dos renombrados CHANS
en el mundo: la Reserva Natural Wolong de China y el Parque NACIONAL Chitwan en Nepal. En las cuatro
lecciones clave que aprendimos de esta comparación de un sitio a otro en relación con los modelos de los CHANS
se incluye cómo representar agentes y el paisaje, la necesidad de módulos estandarizados para los ABMs de los
CHANS, los impactos de programar resultados de los modelos y las precauciones para interpretar “sorpresas” en
los resultados de los modelos CHANS. Concluimos con un protocolo CHANS con la esperanza de ayudar ası́ a
avanzar la ciencia de los CHANS. Palabras clave: modelado basado en agente, sistemas humanos y naturales acoplados
(CHANS), comparación a través de sitios, cambios de uso y cobertura de la tierra, modelando protocolos.

Many ecosystem services vital to human exis-
tence and well-being have been degraded due
to population pressures and unsustainable ex-

ploitation of natural resources (Vitousek et al. 1997;
Foley et al. 2005). This poses a global challenge to
scientists and practitioners about how to better under-
stand these changes and manage ecosystem services. Al-
though some researchers have long realized the impor-
tance of, and have invested efforts in, coupling human
and natural systems, until recently much research still
emphasized either human systems or natural systems
(J. Liu et al. 2007; An 2012), largely holding the other
as exogenous or as background. This approach gives in-
adequate attention to the reciprocal relationships that
often exist between human and natural systems over
space and time. Human interference in these systems
can have unexpected consequences. For instance, hu-
man activities might lead to sudden shifts in natural
systems from desirable to undesirable states (Folke et al.
2004), such as from a clear lake to a lake with toxic
algae blooms (Folke et al. 2002).

The division between natural and social sciences,
along with the assumption that connections between
natural and human systems are decomposable into a
set of simple, unidirectional relationships, has hin-
dered understanding of these systems. Empirical studies
on human–nature systems (e.g., Bian, Quattrochi, and
Goodchild 1997; Irwin and Geoghegan 2001; Dead-
man et al. 2004; An et al. 2005; Crawford et al. 2005;
Grimm et al. 2005; Messina and Walsh 2005; Brown
et al. 2008; Yu et al. 2009) reveal a range of features that
are difficult to address using this traditional approach.
These features include (1) reciprocal effects and feed-
back loops: humans and nature interact with each other
and form complex feedback loops; (2) nonlinearity and
thresholds: the relationships within or among coupled
systems are often nonlinear, and there exist transition
points (thresholds) between alternate states; (3) sur-
prises: surprising outcomes are observable as a result

of human–nature couplings; (4) legacy effects and time
lags: prior human–nature couplings have substantial im-
pacts on later conditions; (5) resilience: human–nature
systems are capable of retaining similar structures and
functioning after disturbances; and (6) heterogeneity:
even within a system substantial differences exist in
socioeconomic variables, human choices and behav-
ior, and ecological conditions and should not be ig-
nored (J. Liu et al. 2007). Corroborating evidence for
these features also comes from the Amazon (Malanson,
Zeng, and Walsh 2006a, 2006b), the southern Yucatán
in Mexico (Manson 2005), northern Ecuador (Walsh
et al. 2008), China (J. Liu 2010), North America
(Lepczyk et al. 2008; Rutledge et al. 2001), and other
places around the world (Rindfuss et al. 2008; An 2012).

In this context, complexity refers to the six fea-
tures just mentioned along with a set of features not
analytically tractable from system components and
their attributes alone, such as path dependence, self-
organization, difficulty of prediction, and emergence
(Manson 2001; Bankes 2002; An 2012). Complexity
theory, from the study of complex systems, offers great
potential to address these phenomena. With partial
origin from general systems theory (Von Bertalanffy
1969; Warren, Franklin, and Streeter 1998), the study of
complex systems focuses on heterogeneous subsystems,
autonomous entities, nonlinear relationships, and mul-
tiple interactions such as feedbacks, learning, and adap-
tation (Arthur 1999; Axelrod and Cohen 2000; Man-
son 2001; Crawford et al. 2005). Instead of a cure-all,
the complex systems approach provides a unique sys-
tematic paradigm to harness complexity instead of de-
composing it into (often) oversimplified unidirectional
linkages. On account of this capacity, the complex sys-
tems approach helps system managers to take innova-
tive action to steer systems of interest in beneficial di-
rections (Axelrod and Cohen 2000).

Building on complexity theory, researchers investi-
gating human–nature systems and ecosystem services
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Agent-Based Modeling in Coupled Human and Natural Systems 725

have developed the coupled human and natural sys-
tems (CHANS) framework (J. Liu et al. 2007). This
framework has evolved in parallel with many closely
related concepts similar to or parts of CHANS, in-
cluding coupled natural and human (CNH) systems,
human–environment systems (Turner et al. 2003),
social–ecological systems (SES; Ostrom 2007), and
social–environmental systems (Eakin and Luers 2006).
Both these other integrative approaches and the
CHANS framework provide many theoretical advan-
tages and empirical insights, including those already
mentioned. Understanding CHANS is by no means a
trivial task, however.

Understanding CHANS requires modeling ap-
proaches that can represent these relationships and the
characteristic structures and processes of CHANS (J.
Liu et al. 2007). Given this requirement, agent-based
modeling is an ideal modeling tool for CHANS. Agent-
based modeling builds in part on the long history in
the spatial and social sciences of trying to understand
and represent relationships and networks between hu-
man actors and landscape change (Latour 1996; Epstein
1999). First, agent-based models (ABMs) can integrate
data across spatial, temporal, and hierarchical scales and
directly capture the relationships between system com-
ponents and decision-making processes of individual
agents (An 2012). CHANS are defined in large part
by the reciprocal relationships between their compo-
nent parts, or agents. Agents might be human actors
on the landscape, or agents might represent structures
(e.g., governing bodies) that could constrain and shape
processes on the corresponding landscape. At a basic
level, CHANS ABMs represent individual agents and
their environment in a computer model, where agents
of the same type or agents at different levels of a scalar
hierarchy (e.g., persons, households, and cities) can in-
teract with one another. ABMs can also represent exter-
nal forces (e.g., climate, policy, economic conditions)
that a modeler might not choose to model directly but
that could be important to the processes being modeled
within a certain ABM.

Although great progress has been made in modeling
CHANS using ABMs in the past decade (J. Liu and
Ashton 1999; Axtell et al. 2002; Parker et al. 2003;
Deadman et al. 2004; Evans and Kelley 2004, 2008; An
et al. 2005; Monticino et al. 2007; Werner and McNa-
mara 2007; Entwisle et al. 2008; An 2012; Chen et al.
2012), generalizing findings from CHANS research
remains a continuing challenge. Previous synthesis
of CHANS studies prioritizes effort to integrate site-
specific case studies to reach broader, generalizable con-

clusions (Turner et al. 2003; J. Liu et al. 2007; Acevedo
et al. 2008). Given the degree of site-specific detail that
is often included in ABMs, and variations in the design
and structure of ABMs of different sites, it can be diffi-
cult to compare ABM-related findings from case studies.
To address this challenge, we present here a comparison
of two CHANS ABMs: one in the Wolong Nature
Reserve, China, and the other in the Chitwan Valley,
Nepal (Figure 1). Our goal is to highlight the similari-
ties and differences between these two models, to focus
on generalizations of modeling approaches, and to raise
several issues of importance for CHANS agent-based
modeling. We begin by introducing the two CHANS.

The Wolong Nature Reserve, established in 1975,
is one of China’s flagship nature reserves for the
endangered giant panda (Ailuropoda melanoleuca; Viña
et al. 2008; Tuanmu et al. 2010). The reserve is in-
ternationally recognized as part of a global biodiver-
sity hotspot (Myers et al. 2000; J. Liu, Linderman
et al. 2001; J. Liu, Daily et al. 2003) and, until the
Wenchuan Earthquake in 2008, was a major tourist
destination in China (He et al. 2008; W. Liu et al.
2012). Wolong is also home to more than 5,000 lo-
cal villagers living within approximately 1,120 house-
holds (as of 2005; Wenchuan County 2006). These
villagers live a subsistence lifestyle and collect fu-
elwood from forests, an activity that directly affects
panda habitat (Chen et al. 2009). They might re-
duce fuelwood consumption if a subsidy is provided
for more use of electricity (the only substitutable en-
ergy source) or if available forests become more distant
from their households (An et al. 2002). Other legal
activities, such as farming and husbandry, exert less
direct impact on panda habitat (Viña et al. 2007). Wo-
long features a rugged and drastically varying terrain
with elevation ranging from approximately 1,000 m to
over 6,200 m, giving rise to drastic changes in vege-
tation and land cover type (Liu, Ouyang, Tan, et al.
1999).

Our second case study site, the Chitwan Valley, is
located in south-central Nepal along the Nepal–India
border. The area, formerly densely forested, was partially
deforested in the 1950s to make way for settlement and
agricultural land use, and eradication of malaria in the
area contributed to a rapid increase in population (Bar-
ber et al. 1997). We focus our study on the western
part of the Chitwan Valley, which at the time of the
last available census in 2011 supported a population
of 284,939 people (Central Bureau of Statistics [CBS]
2012). The valley, part of the lowland Terai landscape
at the foothills of the Himalayas, is generally flat, with

D
ow

nl
oa

de
d 

by
 [

SD
SU

 S
an

 D
ie

go
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 1

2:
29

 1
4 

Ju
ly

 2
01

4 



726 An et al.

Figure 1. The location of our study sites: Wolong Nature Reserve in China and Chitwan Valley in Nepal.

a mean elevation of about 320 m. The western part
of the valley we focus on here is bordered by rivers to
the west and north and the Chitwan National Park
and Barandabar forest (a protected buffer zone forest)
to the south and east, respectively. The 932-km2 na-
tional park (established in 1973) and its 750-km2 buffer
zone (established in 1996) provide habitat for endan-
gered species including the Bengal tiger (Panthera tigris
tigris) and one-horned rhinoceros (Rhinoceros unicornis;
Carter, Riley, and Liu 2012).

Comparison Approach

The complexity of ABMs can complicate textual de-
scription. Making model code freely available is a step
toward transparency, but code is often only understand-
able by experts (Parker et al. 2003; Grimm et al. 2005).
Some CHANS researchers are modeling experts inter-
ested in duplicating model results (which is certainly
important), but generalization of CHANS findings re-
quires making model structure and results readable by a

nonspecialist audience. Thankfully, there has been re-
cent progress in development of communication meth-
ods for ecological models (Schmolke et al. 2010) and
for ABMs (individual-based models, or IBMs in the eco-
logical literature) specifically (J. Liu and Ashton 1999;
Grimm et al. 2006). The overview, design concepts, and
details (ODD) framework developed by Grimm et al.
(2006; Grimm et al. 2010) and Grimm and Railsback
(2012) is a framework for describing ABMs in a stan-
dardized format. The ODD framework has been success-
fully used to describe ABMs in ecology and other disci-
plines (Grimm et al. 2010) and has also been adopted
by many models in the model library maintained by the
Open ABM Consortium (Janssen et al. 2008).

Using the ODD protocol, we compare the Wolong
and Chitwan ABMs and present the differences and
similarities in their model structure. Low-level program-
ming details, including software or platform-specific pa-
rameters, are skipped for brevity. The two models are
described elsewhere with additional details for a tech-
nical audience (An et al. 2005; Zvoleff and An forth-
coming).
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Agent-Based Modeling in Coupled Human and Natural Systems 727

As ODD is primarily designed to document ABMs
rather than to discuss model reliability, we add two ad-
ditional components to our description—model verifi-
cation and validation and CHANS characteristic fea-
tures (under “Model Comparison”). Verification and
validation are essential steps before CHANS ABMs
can be put into use for purposes such as experimenta-
tion, prediction, and scenario analysis (Schmolke et al.
2010). Although debate continues regarding whether
models for complex systems like CHANS can be “ver-
ified” or “validated” (Oreskes, Shrader-Frechette, and
Belitz 1994), we use the term verification and valida-
tion in the sense that models are tested in relation to
their objectives, intended use, and application domain
(Overton 1981; Rykiel 1996). Our working definition
for verification is to check for proper functioning of the
program and for validation is to investigate the corre-
spondence between the software model and the con-
ceptual model (structural validation) and that between
model outcomes and empirical data (empirical valida-
tion; see Manson 2001; An et al. 2005). By adding
model verification and validation and CHANS charac-
teristic features as ODD elements, we extend ODD to
ABMs of complex CHANS, enriching ODD to apply
to a broader audience of CHANS researchers.

Model Comparison

Following the ODD protocol, we summarize the com-
parison results (Table 1). Guided by this framework, we
compare and contrast the similarities and differences
between the Wolong ABM and Chitwan ABM and
explain the rationale for alternative model design deci-
sions. Our goal is to shed light on the lessons that we
can learn for modeling CHANS using ABMs.

Purpose

The Wolong ABM aims to integrate socioeconomic,
demographic, and biophysical processes operating at dif-
ferent spatial, temporal, and organizational scales into
a systems model and to understand and envision how
the habitat of the giant panda might evolve in response
to changes in the preceding processes (An et al. 2005).
The Chitwan ABM was constructed with similar aims
of data integration across spatial and temporal scales.
As prior work at the Chitwan study site has uncovered
reciprocal connections between environment and hu-
man processes, the Chitwan ABM additionally focuses
heavily on representing these connections.

Entities, State Variables, and Scales

Next we present a list of agents, their state variables
and actions, and the similarities and differences in the
two ABMs. We then compare the representations of
the environment in the Wolong and Chitwan ABMs.

Structure of Agents. A real human society can in-
clude a number of hierarchical levels, such as individu-
als, households, and communities of different types and
scales, regional institutions, and national institutions.
Both ABMs follow this pattern, although slight differ-
ences exist in how each model creates and manages
agents: The Wolong ABM has a hierarchy of person,
household, and environment agents (Table 2). This
structure is mirrored in the Chitwan ABM with the ad-
dition of community-level agents between household
and environment. Community agents in the Chitwan
ABM represent a cluster of (usually ten to twenty)
households that live in close proximity and share com-
mon community context—defined as similar access to
markets, employment opportunities, schools, bus stops,
and health centers. The inclusion of this additional
level in the Chitwan ABM is due to the abundant
research in Chitwan about how community context
might affect demographic and land use decisions (e.g.,
Axinn et al. 2007; Ghimire and Axinn 2010; Axinn
and Ghimire 2011).

The agents in the Wolong and Chitwan ABMs
have a set of state variables that vary depending on
the type of agent. The state variables associated with
each agent type also vary slightly between the two
models. We discuss only the major differences be-
tween the two models here—for a complete overview
of each type of agent and the associated state vari-
ables in the two models, see our online supplement
(http://complexity.sdsu.edu/CHANS-ABMs).

Person agents in both models maintain a set of state
variables tracking interrelationships among each other
(person agents have unique person ID variables) as well
as their personal life history events, preferences, and
parents’ characteristics. The key differences between
the Wolong and Chitwan models are in (1) fertility: the
Wolong ABM includes an allowed number of children
parameter to reflect governmental family planning poli-
cies in China; (2) parental characteristics: the Chitwan
ABM associates with each person agent information on
that person’s parents’ employment activities; (3) eth-
nicity: the Chitwan ABM tracks person agent ethnicity,
which explains a portion of the variability in marriage
timing, fertility, fuelwood consumption, and migration

D
ow

nl
oa

de
d 

by
 [

SD
SU

 S
an

 D
ie

go
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 1

2:
29

 1
4 

Ju
ly

 2
01

4 



728 An et al.

Table 1. Comparison of the Wolong and Chitwan ABM models: Summary

Wolong ABM Chitwan ABM

Overview Purpose Integrate multiscale and multidisciplinary
data to envision panda habitat over time
and space

Integrate multiscale and
multidisciplinary data and feedback
between demographic and
environmental change

Entities, state variables, and scales Persons, households, and their major
demographic attributes

Similar to Wolong, except that
communities are added

Process overview and scheduling Initiation of agents and environment;
forest growth and fuelwood collection;
demographic submodels

Initiation of agents and environment;
demographic submodels, land
change, and fuelwood submodels

Design
concepts

Basic principles Agent’s self- and environmental awareness;
maximizing economic utility; minimizing
energy costs

Same as Wolong

Emergence Habitat and population indexes vary
unpredictably with demographic and
socioeconomic conditions

Land use change, household size, and
fuelwood consumption vary
unpredictably with changing
demographics

Adaptation Change fuelwood search radius and reduce
fuelwood demand when forest becomes
farther

Change marriage or first birth timing as
land use changes; change
consumption as household size
changes

Objectives Minimize the cost of wood collection;
maximize economic utility by switching
to electricity

Heuristics used to model decision
process (e.g., outmigration follows
empirically derived models)

Learning Agents “remember” the fuelwood location
and distance from their household;
change fuelwood search radius when
forest becomes farther

Learning not explicitly modeled in the
Chitwan ABM

Prediction Households calculate the distance to the
nearest fuelwood collection site

Prediction is not modeled in the
Chitwan ABM

Sensing Agents’ awareness of demographic and
socioeconomic characteristics of
themselves and others

Same as Wolong

Interaction Marry; household formation (reducing
vegetation), fuelwood collection

Marry; household formation (reducing
vegetation)

Stochasticity Many (e.g., death submodel) Many (e.g., death submodel)
Collectives Household agents are one type of imposed

collective
Household and neighborhood agents

are two types of imposed collective
Observation Personal, household, and population

attributes and events; panda habitat
Personal, household, neighborhood,

and population attributes and events;
land use, fuelwood consumption

Details Initiation Create person and household agents and
landscape objects using empirical data

Same; neighborhood agents

Input data Not used Not used
Submodelsa Demographic, socioeconomic, biophysical,

and human–environment submodels
Same as Wolong

Note: Comparison is made based on the overview, design concepts, and details protocol (Grimm et al. 2006; Grimm et al. 2010). ABM = agent-based model.
aRefer to other tables for details.

activities in Chitwan. The Wolong ABM only has
a parameter not leave parental-home intention that is
derived from An, Mertig, and Liu (2003). It represents
the tendency that married young people, especially
those with special sibling situations (e.g., birth order

among siblings), are more likely to leave their parental
home and set up their own separate home. Due to lack
of data, this parameter is set at an empirically derived
constant without being linked to other socioeconomic,
demographic, and environmental variables.
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Agent-Based Modeling in Coupled Human and Natural Systems 729

Table 2. Entities in the Wolong and Chitwan ABMs

Wolong ABM Chitwan ABM

Entity Present (n) Purpose Present (n) Purpose

Person Yes (4,314) Represents an individual person and his or her
attributes

Yes (8,245) Same

Household Yes (893) Represents an individual household and its
attributes

Yes (1,522) Same

Neighborhood No Yes (151) Represents the impact of neighborhood
context on decision making

World Yes (1) The model world represents the biophysical
environment and exogenous socioeconomic
factors

Yes (1) Same

Note: Entities are arranged starting with the lowest level of the hierarchy at the top of the table. ABM = agent-based model.

Household agents are composed of person agents
(households could be considered imposed “collectives”
in ODD terminology) but also possess their own unique,
higher level state variables. In the Wolong ABM,
households track their location (x, y coordinates) and
electricity quality (price, voltage, and outage levels). In
the Chitwan ABM, we track these variables at the com-
munity level. We model electricity quality variables at
the household level in Wolong because they were the
major concerns in local people’s decision to switch from
using fuelwood to using electricity (An et al. 2002).
In Chitwan, household agents additionally track land
ownership (used in the fertility submodels), time of last
migration (used in the migration and fuelwood usage
submodels), and use of nonwood fuel sources (for the
fuelwood usage submodel).

In Chitwan, another type of collective agent repre-
sents community context: the community agent. Com-
munity agents in the Chitwan ABM track commu-
nity location (x, y coordinates of polygon vertices in
the neighborhood boundary), land use, and commu-
nity context variables. Community agents contain a
set of lower level household agents but also possess
their own, community-level state variables. Commu-
nity context is measured in the Chitwan ABM by a
series of variables tracking the distance in minutes on
foot to a number of key community services and or-
ganizations: markets, employers, bus stops, health cen-
ters, schools, and the major urban area in the valley.
These metrics are consistent with past work in Chitwan
(e.g., Ghimire and Axinn 2010; Axinn and Ghimire
2011) that has documented the influence of chang-
ing community context on individual-level decision
making.

Representation of Time and Environment. We
describe the definition of environment and time in our
models in two domains: (1) resolution, or the smallest
(spatial or temporal) unit over which the phenomenon
of interest is represented, and (2) extent, or geographic
scope or time span over which a process operates or
is measured. We use a yearly time resolution in the
Wolong ABM as most of the data collection (e.g., so-
cioeconomic data in statistical yearbooks), as well as
processes or activities (e.g., harvest of crops, collec-
tion of fuel wood), occur on an annual, occasionally
multiple-year, basis in Wolong. In the Chitwan model,
we choose a monthly time step to match the primary
empirical data sources behind the model (see “Initial-
ization”), and to match the time scale of demographic
processes such as migration. The time span for both
models is set at twenty to fifty years depending on the
outcome under study. This moderate time span allows
considerable change in the modeled systems (e.g., veg-
etation regrowth) but does not span so long as to make
the assumptions underlying the models untenable.

A key difference between the two models is in their
representations of the physical environment, which
represents the space where the corresponding agents
reside or occur, and in many instances make the asso-
ciated decisions. For instance, a person agent in Chit-
wan might look into the environment (e.g., surround-
ing land use) before making marriage timing and first
birth timing decisions, and a household agent in Wo-
long might examine the physical distance between his
or her household and the nearest forest before decid-
ing how much fuelwood to collect (Sections 1 and 2,
online supplement). The Wolong ABM represents the
physical environment in a rectangle of 3,402 km2 that
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730 An et al.

completely covers the reserve boundaries in tangent be-
cause our survey and observations show that the impacts
of human activities, primarily fuelwood collection, of-
ten do not go beyond the reserve boundaries (J. Liu,
Ouyang, Taylor, et al. 1999; An et al. 2005; Bearer
et al. 2008; He et al. 2009; Hull et al. 2011). This rect-
angle consists of a lattice of 696 rows by 602 columns if
the spatial resolution (pixel size) is chosen to be 90 m
or optionally a lattice of 175 rows by 151 columns if
the spatial resolution is chosen to be 360 m (An and
Liu 2010). Our spatial resolutions are chosen partly due
to the 30-m resolution of our major remote sensing
data source (Landsat, from which we resample to the
preceding resolutions) and partly due to our concerns
regarding simulation speed. Too fine a spatial resolution
would exponentially slow down simulation, which was
a great concern at the time of developing the Wolong
ABM, when technological advances (e.g., faster com-
puters, parallel computing) were more limited. At the
same time, we believe that the fine resolution of 90 m
should suffice in capturing the major influence of fuel-
wood collection on panda habitat, and we use the coarse
resolution of 360 m when higher level socioeconomic
or demographic outcomes are of major interest.

The Chitwan ABM, in contrast, does not have a spa-
tially contiguous landscape like the Wolong ABM. In-
stead, its physical environment is composed of 151 spa-
tially disconnected communities that range in area from
350 to 300,000 m2 with a mean of 75,000 m2. These
spatially disconnected communities are located within
a region of 493 km2, representing the full extent of the
area north of the Chitwan National Park and west of the
Barandabar buffer zone forest in Chitwan (Carter et al.
2013; Zvoleff and An forthcoming). The area of each
community is calculated from a ground survey using
tapes and compasses. Community-level state variables,
including numerical values of the area of each land-use
class (agricultural vegetation, nonagricultural vegeta-
tion, private buildings, public buildings, and other), are
tracked within each community. We made this choice
for the Chitwan ABM because the submodels (see “Sub-
models”; for details, see the online supplement) within
the Chitwan ABM do not depend on the spatial dis-
tribution of land use within a community and because
data limitations prevent the assignment of land parcels
to particular households. Similar to the Wolong ABM,
the Chitwan ABM also includes a 90-m spatial resolu-
tion grid of 319 columns and 189 rows (488 km2) con-
taining elevation data from a Shuttle Radar Topogra-
phy Mission (SRTM) digital elevation model. This data
could support future work considering natural hazards.

Process Overview and Scheduling

Both ABMs, at the initialization step, set up the land-
scape and create person, household, and community
(Chitwan only) agents. Each model reads in input data
associated with each agent, and each agent is located
on the landscape. The Wolong and Chitwan ABMs
run with yearly and monthly time steps, respectively.
We leave the explanation of these submodels for later
but highlight the relationships between these processes
(submodels) as well as differences and similarities be-
tween the two ABMs here (Figure 2). We can see that
the Wolong ABM leans more toward forest dynamics
and fuelwood collection, whereas the Chitwan ABM
focuses more on land use that is primarily affected by
new household formation. Also, the major demographic
processes (i.e., migration, marriage, fertility, mortality)
in Chitwan, unlike those in Wolong, are endogenous
and thus receive impacts from the environment.

In both ABMs, a particular person agent experi-
ences the demographic submodels within his or her
lifetime not necessarily in the order of submodel place-
ment in the code but in accordance with a set of so-
ciodemographic constraints such as the age and mari-
tal status of that agent. Consequently, a person agent
goes through the submodels in an order that mirrors
the sequence of events in his or her personal life
course. The mortality and the nondemographic sub-
models are exceptions, which we place in an order con-
sistent with empirical expectations (see the sections
“Submodels” and “Lessons Learned” for the effects of
varying the sequence of submodels). To test the po-
tential impact of scheduling on key variables of inter-
est such as population size, number of households, and
panda habitat (Wolong) or population size, number of
households, and agricultural land use (Chitwan), we
reversed the order of these submodels and ran thirty
simulations.

Design Concepts

In this section, we discuss the similarities and dif-
ferences in the design concepts guiding construction
of the two ABMs, focusing on basic principles, objec-
tives, learning, adaptation and prediction, sensing and
interaction, and stochasticity.

Basic Principles. Both ABMs integrate theoret-
ical findings from the geographic, sociodemographic,
and ecological literature in a series of submodels link-
ing human and natural systems at each study site. Both
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Agent-Based Modeling in Coupled Human and Natural Systems 731

Figure 2. Comparison of the major processes between the Wolong ABM and the Chitwan ABM. The rectangles and arrows represent the
major processes and links among them, respectively. Note: W = Wolong; C = Chitwan; ABM = agent-based model.

D
ow

nl
oa

de
d 

by
 [

SD
SU

 S
an

 D
ie

go
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 1

2:
29

 1
4 

Ju
ly

 2
01

4 



732 An et al.

Table 3. Submodels in the Wolong and Chitwan ABMs

Submodels

Category Name Brief description

Demographic Marriage – Marriage probability The probability is empirically determined (Wolong) or
regression-based (Chitwan).

Marriage – Spouse choice A qualified agent marries a local or inmigrant with
consideration of kinship, age, and ethnicity (Chitwan
only).

Fertility – Birth A married woman bears a child if several conditions are
met.

Fertility – First birth timing This timing is empirically determined (Wolong) or
regression based (Chitwan).

Household establishment It follows a marriage with several constraints.
Household removal This happens when household size becomes zero. In

Chitwan, nonpermanent migrants are allowed.
Outmigration – Decision to outmigrate Individuals or households (Chitwan) might migrate out

contingent on age, sex, and other covariates.
Outmigration – Outmigration length The nonpermanent migrant (Chitwan) will return when

enough time (equal to outmigration length) passes.
Inmigration Individuals or households (Chitwan) might migrate in

contingent on age, sex, and other covariates.
Divorce It is controlled by a fixed monthly probability (Chitwan

only).
Death Each person may die according to age (and sex in Chitwan).

Socioeconomic Potential fuelwood demand This is a linear function of covariates that are different in
Wolong and Chitwan.

Tendency to use electricity or fuelwood The tendency is modeled as a probability function of
covariates (different in Wolong and Chitwan).

Biophysical Vegetation growth This measures how pixels of different vegetation grow until
reaching age or volume upper bounds (Wolong). In
Chitwan, very few collect live wood.

Human–environment interaction Fuelwood collection A fuelwood collector chooses a pixel with the shortest cost
distance (Wolong).

Land use change New building construction takes land from agricultural land
(preferentially) or nonagricultural vegetation (Chitwan).

Note: See online supplement for details. ABM = agent-based model.

models represent agent decision making with varying
degrees of stochasticity, implicitly assuming that agents
make rational decisions bounded by certain knowl-
edge or information constraints, to maximize their well-
being. For example, we represent the energy transition
in the Wolong and Chitwan models based on our un-
derstanding of household’s attempts to minimize their
energy costs. Our stochastic “tendency to use electricity
or fuelwood” submodels (Table 3) implicitly represents
this economic decision by assigning a probability of fu-
elwood usage to each household according to a number
of covariates.

Both models assume two-way influences between
sociodemographic features (or actions) and the local
environment. For instance, household-level resource
demands depend on a set of socioeconomic, demo-

graphic, and geographic variables in both models. Draw-
ing on the richer longitudinal data available in Chit-
wan (see “Initialization”), the Chitwan ABM allows for
more built-in endogeneity between demographic deci-
sions and environmental change than does the Wolong
ABM.

Objectives. The objectives of the agents within
each ABM influence the construction, validation, and
application of each model (Grimm et al. 2006). In the
Wolong and Chitwan models, agents are modeled to
encounter a number of decision-making points rather
than to maximize “success” or achieve a particular ob-
jective. At each decision point, agents make decisions
in accordance with the observed data, with a set of tech-
niques (empirically derived probability distributions,
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regression models, heuristic models, etc.) used to model
decision-making processes. There are two exceptions:
The first is the path finding model included in the
Wolong model, in which agents seek to minimize
the cost of wood collection (see the online supple-
ment). The second is the decision to switch from
using fuelwood to electricity, which implicitly aims
to maximize household economic utility (An et al.
2002).

Learning, Adaptation, and Prediction. We group
learning, adaptation, and prediction—three separate
subcategories in the original ODD (Grimm et al.
2006)—into one category, as they are all related to
agent decision making. Learning is a key part of the
Wolong fuelwood collection model, in which agents
“remember” the location and distance from their house-
hold of the last pixel on which they collected fuelwood.
Adaptation is interpreted in an ecological sense; that is,
as traits or rules of agents in “making decisions or chang-
ing behavior in response to changes in themselves or
their environment” (Grimm et al. 2010, 2764), where
traits or rules themselves might or might not change.
Therefore, adaptation is represented in both the Wo-
long and Chitwan models. In the Wolong ABM, as fu-
elwood in nearby forest areas is depleted, agents adapt
by changing their search radius to consider more dis-
tant forest patches. As available forests become farther,
local people might also reduce their fuelwood demand
and adapt by using more electricity. The Wolong ABM
also allows a set of hypothetical conditions (related to
electricity price, voltage, and outage) as policy controls,
and local agents are modeled to predict the future con-
sequences of such policies implicitly, where the policy-
induced change in an unspoken household economic
return is represented as inflated or lowered probabilities
to use electricity in place of fuelwood.

In the Chitwan ABM, adaptation to conditions is re-
flected in the rules included in the stochastic submodels.
For example, the marriage model uses the results of a
logistic regression to predict probability of marriage in a
given month for a particular person agent dependent on
a set of person-level (age, gender, etc.) and community-
level (including land use) state variables. As land use
and community context change, marriage rates change
at a magnitude determined by the coefficient of the
corresponding variables in the regression model. We use
similar approaches to model how fertility and migration
behavior adapts to changing land use in the Chitwan
Valley.

Sensing and Interaction. In both the Wolong and
Chitwan ABMs, we assume that all person and house-
hold agents know their own demographic and socio-
economic characteristics as well as environmental
features in their residence and surrounding areas (see
“Entities, State Variables, and Scales” for details). This
information informs the agent’s decisions. For example,
in the Wolong ABM, when the fuelwood transportation
distance varies, household agents change their proba-
bility of using fuelwood.

In both models, one of the primary interactions be-
tween agents is marriage. In the marriage submodel,
two eligible person agents might get married to each
other and build a new house or two married agents
might divorce (Chitwan ABM only) with probabilities
dependent on the state variables associated with that
person, household, and community. Agents also inter-
act with their environment. Although new household
formation is the primary land change process in Chit-
wan, agents in the Wolong model also interact with
their environment through fuelwood collection.

Stochasticity. Uncertainty is prevalent in many
processes in CHANS. There is uncertainty in deter-
mining if, when, and where an event will happen. To
reflect this fact, CHANS models often include stochas-
tic processes, or processes with a certain degree of ran-
domness. There are many stochastic processes in both
ABMs. One example is the mortality submodel. In both
models, to decide whether a person agent may die in a
given time step, the model creates a random number be-
tween zero and one and compares it with the death rate
of people in the corresponding age group (the Chitwan
ABM is also gender differentiated). The person dies if
the random number is smaller than the rate; otherwise,
he or she survives to the next time step.

Initialization

The Wolong model is initialized with 4,314 per-
son agents and 893 household agents. The Chitwan
model is initialized with 8,242 person agents, 1,522
household agents, and 151 community agents. The pri-
mary data sources for the Wolong ABM are the 1996
Wolong Agricultural census (Wolong Administration
1996), the 2000 population census (Wolong Adminis-
tration 2000), and in-person surveys of 220 households
(conducted in 1999; An et al. 2001). The Chitwan
ABM is parameterized primarily using data sets from
the Chitwan Valley Family Study (CVFS; Axinn et al.
2007), a fifteen-year multilevel panel study launched
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in 1995–1996. At the 1995–1996 baseline, a retrospec-
tive fifty-year neighborhood history calendar was col-
lected for each sample neighborhood in the study, and
a matched retrospective life history calendar was con-
structed for each individual respondent (Axinn, Barber,
and Ghimire 1997; Axinn, Pearce, and Ghimire 1999).
In January 1997, the CVFS launched a demographic
event registry for all households and individuals in the
baseline to track demographic events (births, deaths,
marriages, and migrations) in the 151 sample neighbor-
hoods in the western Chitwan Valley. The CVFS also
produced detailed maps of land use and land cover and
household agriculture and consumption measures in all
study neighborhoods in 1996, 2001, and 2006. Addi-
tional fieldwork and household interviews were con-
ducted by the authors in 2009 (80 households) and in
2011 (297 households) to further support development
of the Chitwan ABM.

The two ABMs differ in the way they select agents
to be included in the model. The Wolong ABM is ini-
tialized with every resident in the Wolong study area in
1996 represented as a person agent in the model. The
Chitwan ABM, however, simulates only a sample of the
total population of the western Chitwan study area. The
sample used in the Chitwan ABM is taken from the re-
spondents of the CVFS (Axinn et al. 2007). The CVFS
sample includes 1,522 out of the 30,838 households
in Chitwan as of the 1991 census (CBS 1991). This
sample is distributed among 151 communities spread
throughout Chitwan, each with a set of household and
person agents. The 151 communities in the model act
as a set of “windows” into human–environment inter-
actions within Chitwan (Zvoleff and An forthcoming).
This “sample” approach allows examination of spatial
and temporal variation in demographic processes with-
out the need to simulate all (more than 200,000) indi-
vidual agents in the model (see “Lessons Learned” for
additional details on initialization of CHANS ABMs).

When assigning initial values to agent state vari-
ables and submodel parameters, we make a distinc-
tion between model parameterization and model cal-
ibration. Calibration is the process of tuning the model
parameters so that model output matches what is empir-
ically observed (Oreskes, Shrader-Frechette, and Belitz
1994). Parameterization, on the other hand, refers to
the process of empirically determining parameter val-
ues based on observed data from the system itself, in-
cluding surveys, plot data, and household registries. To
avoid the problem of tuning the model to fit our ex-
pectations, we derive the parameter values used in the
Chitwan and Wolong ABMs empirically.

Input Data

Neither model uses external data inputs to model
external forcings.

Submodels

The two ABMs are imbalanced in the amount of
information included in the different types of submod-
els. Given the multiple types of interactions modeled
in each of these CHANS, we break the submodels
up into four key categories: demographic submodels,
socioeconomic submodels, biophysical submodels,
and human–environment submodels. In general, the
Wolong ABM tends toward a higher degree of detail in
the biophysical submodels, whereas the Chitwan ABM
includes greater detail in the demographic submodels.
Due to the key role of human demographic decisions
in affecting CHANS dynamics and availability of the
relevant data (especially in Chitwan), the majority
of our submodels are about demographic processes or
decisions (Table 3). The other types of submodels
in general include less detail and are developed
as part of our ABMs according to our site-specific
understanding of key CHANS processes affecting our
major dependent variable(s) (panda habitat in Wolong
and agricultural land use in Chitwan).

The submodels in both ABMs are parameterized
drawing on the census and survey data sources (see
“Initialization” for details) and a set of standard
statistical techniques, including empirically derived
probability distributions, ordinary least squares regres-
sion, generalized linear models, multilevel modeling,
and event history analysis (Zvoleff and An 2014).
The brief characteristics of these submodels are sum-
marized in Table 3 with details posted online at
http://complexity.sdsu.edu/CHANS-ABMs. Next we
present an overview and comparison of the submod-
els in the two ABMs.

In the Wolong ABM, the forest dynamics submodel
runs first after the agents and landscape are initiated and
mapped (Figure 3). This is a process of natural growth
of the four vegetation types (derived from satellite im-
agery) according to empirical data (Section 3 of the
online supplement). Following this natural process, the
fuelwood collection submodel (Section 4 of the online
supplement) runs based on the fuelwood demand as-
signed to each household during model initiation. Later
all households choose the nearest (in cost-distance) for-
est patch and cut down trees at an amount determined
by the household fuelwood demand submodel. Humans
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Agent-Based Modeling in Coupled Human and Natural Systems 735

Figure 3. Sequence of the major submodels in the Wolong ABM
and the Chitwan ABM. The arrows link submodels that are run in
a sequential order (i.e., from the earliest to the latest) at each time
step. The dotted lines link similar submodels in both ABMs. Note:
ABM = agent-based model.

affect the environment (panda habitat in particular)
through this major means (Linderman et al. 2005).
Next, the Wolong ABM runs the household fuelwood
demand submodel, which calculates fuelwood demand
based on household socioeconomic (including electric-
ity substitution) and demographic data (Section 2 of the
online supplement). Then the model runs the educa-
tion (and outmigration) submodel, where all people be-
tween sixteen and twenty may go to college or technical
school at an empirical probability and thus migrate out
of the reserve (Section 1.6.1 of the online supplement).
Following that, the model runs the mortality (and incre-
ment ages) submodel, in which each individual either
dies if the random number generated is less than the cor-
responding age- and sex-based mortality rate or has his
or her age incremented by one year. Then the Wolong
ABM runs the marriage (and household formation, and
outmigration) submodel, where each person, once eligi-
ble (or after passing several checks), could marry a local
or outside person according to different empirically de-
rived probabilities. This submodel, when checking all
related information (age, sex, sibling order), also incor-
porates postmarriage establishment of new households
and resource (farmland primarily) allocation. Finally,
the fertility submodel is implemented, where all eligi-
ble women (married without children or married with
fewer children than desired, and provided that enough
time has elapsed since marriage or the last live birth)
may bear children.

The Chitwan ABM runs a similar series of submod-
els in sequence with a scheduling order that agrees with
our data and insights into the system. First, the fertility
submodel runs, which handles women’s first childbear-
ing after marriage and then handles subsequent births
to women who have already had their first child, are
within the allowed age range to give birth (age fifteen
to forty-five), and have fewer than their desired total
number of children. The mortality submodel runs next,
in which each person agent is subject to a small proba-
bility of dying within the time step, dependent on the
agent’s age and sex. The marriage submodel follows, in
which the results of an empirical model are used to cal-
culate the probability of each eligible agent (unmarried
person agents older than age fifteen) marrying within
the time step (Yabiku 2006). Married couples move out
of the husband’s parental home with a fixed probability,
the household fission rate, which is determined empiri-
cally. If they move out, they establish a new household
on agricultural land (an empirical observation), con-
verting the land to private infrastructure. We draw the
parcel size for the new household from an empirical
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probability distribution. Following the marriage sub-
model is the divorce submodel, in which each mar-
ried individual is subject to a small probability of di-
vorce within the time step. Next, the migration sub-
model allows in- and outmigration at the individual
and household levels. We calculate the probability of
individual outmigration outside of the western Chit-
wan Valley study area for each eligible person agent
(those older than fifteen years old), again based on
an empirical model including individual-, household-,
and neighborhood-level covariates (Massey, Axinn,
and Ghimire 2010). A separate portion of the migra-
tion submodel determines the probability a migration
will be permanent or, if not, the length of time an indi-
vidual will be absent from the valley. Household-level
in- and outmigration is determined with simpler mod-
els (given the limitations of our empirical data). For
household-level outmigration, we assign a single prob-
ability of outmigration to all households in the model.
For household-level inmigration, we assign a histogram
of the number of households that might inmigrate in a
given time step. The number of inmigrating households
is chosen from this histogram. The education submodel
uses empirical data from the CVFS to model the final
years of schooling each individual will achieve, based
on sex, ethnicity, and community characteristics. Fi-
nally, in the fuelwood demand submodel, the probabil-
ity of a household using fuelwood is modeled with an
empirically derived logistic regression model, and the
total fuelwood demand is determined based on a linear
model taking into account household size, ethnicity,
stove type, and household gender composition.

As already seen, the scheduling order in the Wo-
long and Chitwan ABMs differs. To test the effects
of scheduling on model outcomes, we reverse the or-
der of the submodels (Figure 3). For the Wolong
ABM, we grouped the submodels into three cate-
gories: (1) simulating environment (SE), which in-
cludes the forest dynamics submodel; (2) simulat-
ing human–environment interaction (SHEI), which
includes the fuelwood collection submodel; and (3)
simulating-sociodemographics (SSD), which includes,
given the household-level fuelwood demand deter-
mined, education, mortality, marriage, and fertility sub-
models (in this order) that run at the individual level.
To compare with the original order of SE → SHEI
→ SSD in the Wolong ABM, we reversed the order
to be SSD → SHEI → SE and simulated population
size, number of households, and area of panda habitat
over fifty years. The t test (two-tailed assuming unequal
variances) results show that at year 50, the population

size and number of households do not change signifi-
cantly (p = 0.33 and 0.98, respectively). The area of
panda habitat at year 50 has experienced changes that
are small in magnitude (about 0.33 percent); that is, a
decrease from M = 280.91 (SD = 1.04) in the original
order (SE → SHEI → SSD) to M = 279.98 (SD =
1.31 km2) in the reversed order (SSD → SHEI → SE).
The change is statistically significant, however, with a
p value of 0.0035 (two-tailed t test assuming unequal
variances).

Because of the abundance in sociodemographic pro-
cesses in the Wolong ABM, we specifically reverse the
order of submodels in the SSD category to be fertility
→ marriage → education → mortality and then calcu-
late the fuelwood demand at the household level. This
reversal causes a significant change in population size
(p = 0.0022, for two-tailed t test assuming unequal vari-
ances), even though the magnitude of change is still
small (1.02 percent). The number of households and
habitat area do not change significantly (p = 0.27 and
0.88, respectively).

To test the effect of scheduling order in the Chitwan
model, we performed a similar experiment, again finding
that scheduling order can lead to statistically significant
differences in model outcomes. Moving the education
and migration submodels to occur in sequence at the be-
ginning of the time step, and moving the fertility model
to occur after the mortality submodel, in the year 2050,
we see an increase of 3.83 percent in the number of
households (relative to the original scheduling order),
and a decline of 0.24 percent in the total population
(p < 0.001 and p = 0.53, respectively, again using
two-tailed t tests assuming unequal variances). Com-
paring the two scheduling orders, we see the largest
change in land use (expected given the change in
number of households), with a decline in agricultural
land of 5.35 percent when we reorder the submodels
(p < 0.001).

Model Verification and Validation

The Wolong ABM established a protocol to verify
and validate complex ABMs, including (1) progressive
model building and debugging, (2) uncertainty testing
(extreme tests and extreme combination tests), (3) em-
pirical validation, (4) sensitivity analysis, and (5) ex-
perience or expert opinion (An et al. 2005). The key
state variables, including panda habitat amount, human
population size and composition, the number of house-
holds, and household size, pass all the above tests (An
et al. 2005).
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Agent-Based Modeling in Coupled Human and Natural Systems 737

Verification and validation of the Chitwan ABM
follows a protocol similar to that described earlier. To
ensure the model code in the Chitwan ABM functions
as expected (and that there are no software bugs), we
also include in the model code simplified alternative
versions of each major submodel, which we can turn
on or off for testing purposes. Model outcomes from
runs using the simplified instead of the more complex
submodels should not be identical, but we would also
not expect them to diverge radically. Special verifica-
tion code is also hard-coded into the model to verify
that each submodel functions as expected and that all
agents have reasonable values for their state variables
at all times. For example, we track the age of the oldest
person in the Chitwan ABM, and of the mean age of
the population, to ensure the mortality model is func-
tioning as expected.

CHANS Characteristic Features

CHANS have been noted to have several charac-
teristic features that can impact system structure and
function: reciprocal effects and feedback loops, non-
linearity and thresholds, surprises, legacy effects and
time lags, resilience, and heterogeneity (J. Liu et al.
2007). These features are often observed in the out-
comes of CHANS ABMs, and we summarize them in
Table 4 (see Section 5 of the online supplement for
details).

One prominent issue that comes from our compar-
ison is related to surprises. We bring attention to sur-
prises that emerge from the unique characteristics of
humans, the environment, and the ways in which hu-
mans and the environment interact. Detecting and ex-
plaining surprises of this kind, often difficult (if not
impossible) by looking at the data alone, often involves
some type of modeling, systems integration, or both
(agent-based modeling is an excellent tool). Examples
include the habitat unresponsiveness within 5,000 m
of perceived fuelwood collection distance (Wolong),
where less motivation to reduce fuelwood, greater en-
vironmental heterogeneity (thus allowing for more dis-
turbance like fuelwood collection), and other reasons
might help explain these surprises (see the online sup-
plement for more details). On the other hand, there
are surprises that are relatively easy to detect and un-
derstand by looking at the available data or weaving
together different kinds of information. Examples of
this kind include the “sixteen-year dormancy” in Wo-
long (the number of households remains unchanged for
sixteen years when marriages are delayed sixteen years)
and fuelwood’s delayed response to population increase
in Chitwan (fuel wood demand increases slowly as pop-
ulation size increases, given increased efficiency of re-
source usage in large households). Surprises of this kind
are still informative because they could stimulate in-
depth thinking about the model structure, function, and
interrelationships among model components and thus

Table 4. CHANS characteristic features

Wolong ABM examples Chitwan ABM examples

Reciprocal effects and feedback loops Intense use of fuelwood, thus distancing nearest
forest providing such fuelwood, would feed
back into a decreased fuelwood demand

Women in places with more agricultural land
get married earlier, bear children sooner,
establish households faster, and convert more
agricultural land to other land uses

Nonlinearity and thresholds Habitat is unresponsive when the perceived
fuelwood collection is beyond 5,000 m
(5,000+ m habitat unresponsiveness)

Per-person fuelwood consumption is nonlinearly
dependent on household size

Surprises Number of households remain unchanged for
sixteen years when marriages are delayed
sixteen years; see above 5,000+ m habitat
unresponsiveness

Fuelwood is tardy in response to population
increase

Legacy effects and time lags Population size, number of households, and
habitat area respond to changes in family
planning factors with increasing lags

Fuelwood usage lags population increase due to
slower increase in household size, decline in
fertility, and increase in marriage age as
younger population ages

Resilience Panda habitat would respond very little with
increasing fertility

Land use change is resilient to moderate
changes in fertility or migration rates

Heterogeneity All the state variables The same

Note: CHANS = coupled human and natural systems; ABM = agent-based modeling.

D
ow

nl
oa

de
d 

by
 [

SD
SU

 S
an

 D
ie

go
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 1

2:
29

 1
4 

Ju
ly

 2
01

4 



738 An et al.

help in model verification (especially for novices). Fi-
nally, we bring to CHANS researchers’ attention errors
in data, mistakes in ABM rules, or bugs in model code
that might give rise to seemingly “surprising” outcomes
but are essentially not surprises that reveal CHANS
characteristic features.

Lessons Learned

Our comparison of the Chitwan and Wolong ABMs
leads to several lessons to take into account in the de-
sign, construction, and analysis of CHANS ABMs. We
organize this section around the four lessons we learned:
(1) What Should the Agents Be? (2) Can We Reuse
CHANS Submodels? (3) Does the Scheduling Order
of Submodels Matter? and (4) What Are the Surprises
That Deserve More Attention in CHANS Research?

What Should the Agents Be?

Choosing what agents to include in a CHANS ABM
of course hinges on many related factors, such as objec-
tives of the study, availability of data and understanding
of the CHANS of interest, and the modeler’s views on
the complexity of the system. Making this decision is
both a science and an art, as this decision might play
a fundamental role in determining the structure of the
ABM and in shaping the resultant understanding of
the corresponding CHANS. Given the dual nature of
any CHANS (humans on the one side and the envi-
ronment on the other), we recommend first drawing
up a hierarchical list of potential agents. For exam-
ple, this list might include persons, households, lower
level communities (e.g., villages), higher level commu-
nities (e.g., districts), and environment units, up to the
whole landscape. We use this type of agent-based rep-
resentation in both ABMs. The Wolong ABM has a
hierarchical list of persons–households–environment,
and the Chitwan has its counterpart as persons–house-
holds–communities–environment. Depending on the
objectives, CHANS modelers could start from any
level in the list and end somewhere later, contingent
on including at least one type of human (or commu-
nity) agent and one type of environment agent such
that the dual (human and environment) nature of
CHANS is represented. Revolving around this rela-
tively straightforward and self-evident recommenda-
tion, a few issues emerge that might deserve more
attention.

First, should we choose all individuals or a subset of
them in our study site as agents? From our comparison

of the Chitwan and Wolong ABMs, we note the flex-
ibility modelers might have in deciding how to set up
the initial agents in a CHANS ABM. We initialize the
Wolong ABM with the full population of the study site
in 1996—what we call the “population” approach. The
Chitwan ABM, however, only uses a subset of the peo-
ple and households that are spatially scattered on the
Chitwan landscape in 1996—the “sample” approach.
The Chitwan ABM is, to the best of our knowledge,
the first usage of this approach, which is appropriate
given its goal of exploring reciprocal connections be-
tween population and environment with a heavy focus
on community context. To visualize population-level
outcomes (total population, etc.), we can upscale find-
ings from our sample to the population level simply by
weighting according to the sampling scheme of the orig-
inal CVFS survey (Barber et al. 1997). Furthermore,
given the detailed demographic and socioeconomic
data that are available in Chitwan through the CVFS
project, we are hesitant to create agents whose char-
acteristics are drawn from aggregate distributions (e.g.,
mean, standard deviation, histogram) or relationships,
as we might lose or dilute the interrelationships be-
tween the agents and agent state variables in our model.
Finally, a practical concern is the huge (compared to
Wolong) population size in Chitwan (284,939 people
in almost 67,988 households in 2011; CBS 2012).

In parallel to this flexibility, our follow-up questions
are as follows: Should we choose all of the landscape
(the spatially contiguous landscape) or a subset (usu-
ally a number of spatially discontinuous locations) of
our study site as the environment and how fine (or
coarse) should the environmental agents be? The spa-
tial extent of an ABM traditionally represents all of the
landscape, usually in a raster format. This is reflected in
the Wolong ABM. Complementary to this approach,
CHANS modelers could also build their simulations
on a (not necessarily spatially contiguous) subset of
the landscape, as we did in Chitwan, as long as this
is taken into account when interpreting, interpolat-
ing, or extrapolating the simulation results. In princi-
ple, CHANS modelers should choose a resolution and
extent that are appropriate for the major processes un-
der investigation. The spatial resolution should be fine
enough to capture variability of the major processes and
patterns of interest, but it is largely up to the modeler
to decide what variability needs to be captured.

Similar conclusions apply to the choice of time
span and temporal resolution (yearly for Wolong and
monthly for Chitwan), where data availability, major
processes of interest, and research goals could all play a
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major role. When choosing the simulation time span,
we could choose a span that is long enough that all
major processes can take place (e.g., a child grows up,
marries, and forms his or her own household) but not
so long as to allow model uncertainty to escalate, de-
creasing model reliability to a low level.

Can We Reuse CHANS Submodels?

In our comparison, we show that from a modeling
standpoint, many of the submodels in the Chitwan and
Wolong models function similarly, even given their dif-
ferent contexts. Given these similarities, using stan-
dardized submodels in the two ABMs, and in CHANS
ABMs in general, would have several benefits. The first
would be to simplify comparison of ABMs, lowering the
technical barriers to CHANS ABM construction. The
second would be to make the impact of model structure
on model outcomes more clear—as modelers will be-
come familiar with standardized modules. At the same
time, when multiple users use and test modules, the
modules are more likely to be error free and reliable.

Although many of the modules in the two ABMs
are similar, some are highly dependent on site-specific
context, either due to substantive differences in pro-
cesses from site to site or due to the same or similar
processes being measured differently between the two
sites. Due to our modeling focus in this article, we fo-
cus on how different processes can be handled, leaving
measurement differences to another article in prepara-
tion. Falling in the highly site-specific category are the
tendency to use electricity and land use and path find-
ing submodels in the Wolong ABM and the marriage
timing, circular outmigration, and first birth timing sub-
models in the Chitwan ABM. Despite such site-specific
processes, many of the submodels share a fair amount
of similarity while having certain site-specific features.
Taking migration as an example, the Wolong ABM
allows only permanent outmigration, whereas the Chit-
wan ABM allows both permanent and circular mi-
gration, with the migration decision based on a large
number of individual-, household-, and neighborhood-
level covariates. The more detailed Chitwan ABM mi-
gration model is made possible by the more extensive
migration histories available at the Chitwan site (a mea-
surement difference between the two sites).

To arrive at a module that is comparable and reusable
across sites, we recommend decomposition of each pro-
cess down to the lowest level at which we are able to
build reusable modules. For instance, we might decom-
pose the process of outmigration into two parts: the de-

cision to outmigrate and the outmigration action itself.
For the decision to outmigrate submodel, one model
might have more factors represented in the decision-
making process than another (in our case the Chitwan
ABM has more factors represented than the Wolong
ABM). For this example, we would suggest building a
standardized migration decision submodel based on the
more complicated process representation (the Chitwan
ABM) that can be reused in a simplified form in other
models (the Wolong ABM).

This approach follows from the fact that many of the
decision-making submodels in the Wolong and Chit-
wan ABMs function similarly in the following aspects:
(1) calculate probability of agent performing action, (2)
draw random number, and (3) if random number is less
than the calculated probability of the agent perform-
ing the action, then the agent will perform the action.
Parts 2 and 3 do not need to be modified across sites
(code tracking agent locations and ID numbers need
not be site-specific); for Part 1, site-dependent regres-
sions can be used to compute the probability needed.
This modeling approach also allows incorporation of
results from regression models (e.g., hazard modeling
or logistic regression) that researchers from other fields
might already be familiar with from their previous work.

To this end, we have composed a set of mod-
ules as pseudo-code, easily readable by nonmodeling
experts, which might be adaptable for use in other
CHANS ABMs. We have built a preliminary library
of these modules in Netlogo and Python (see http://
complexity.sdsu.edu/CHANS-ABMs), two popular
programming languages, and have released them un-
der the GNU General Public License. The goal of this
library is to offer a set of modules that is transparent
and reusable and subject to improvement and modifica-
tion from us and other people in the CHANS modeling
community.

Does the Scheduling Order of Submodels Matter?

The potential impact of scheduling order (the or-
der in which model processes are implemented) on
model output has long been recognized in the litera-
ture (e.g., Axtell 2001; Railsback, Lytinen, and Jackson
2006) but has rarely been quantified and taken into ac-
count in existing work. Based on our simulation data,
we have noticed that statistically significant differences
have arisen in several key dependent variables of in-
terest solely from changing the order of the major sub-
models in the Wolong and Chitwan ABMs. Although
statistically significant, these differences are generally
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small (often around 1 percent) in magnitude for sim-
ulations over a fifty-year time span. On the one hand,
the small magnitudes of these differences might indicate
that the large-scale patterns of our key dependent vari-
ables (panda habitat in Wolong and agricultural land
use in Chitwan) are controlled by the major processes
and parameters in the model rather than by the order
of these processes. This allows us to have confidence in
the reliability and usefulness of our CHANS ABMs.

One the other hand, the scheduling-induced dif-
ferences are statistically significant, suggesting that
scheduling order is contributing to the model outcome
in a systematic (nonrandom) manner, and in many in-
stances, this contribution will be escalating over time.
This is confirmed by our simulation results, where the
percentage difference between the default scheduling
order and a reordered schedule lead to differences in
total population (relative to the default scheduling or-
der) of 0.51 percent (p < .001) at ten years, rising to
1.02 percent (p < .001) after fifty years for the Wo-
long model. The Chitwan model exhibits similar sen-
sitivity to scheduling order, with a model with a re-
ordered schedule showing declines in total agricultural
land (relative to the default scheduling order) of 0.80
percent after ten years (p < .001), and 5.34 percent after
fifty years (p < .001). The accumulated effects of these
scheduling-induced differences could play a key role in
CHANS structure and dynamics, especially over long
time scales (over fifty years in the case of the Chitwan
and Wolong ABMs) or in combination with other com-
plexity factors. For instance, the lost habitat due to a
change in scheduling order, although small in amount,
might be located in places that break existing corri-
dors for pandas to move from different habitat patches.
More interestingly, we posit that scheduling order could
be more important for ABMs with a coarse time step,
where a single time step can represent a relatively long
period in the life of an agent. Our simulation data do
not support this proposition, as the Chitwan ABM with
a fine (monthly) time resolution has also displayed sig-
nificant differences arising from scheduling order.

In summary, we recommend that investigation of the
importance of scheduling order be included in the de-
sign of CHANS ABMs, such as through randomization
of process order, unless we are certain that one process
should come before or after others. This way we could
minimize the influences of scheduling order on model
outcomes, making model outcomes more likely to reveal
what they are supposed to reveal. If not able or possible
to specifically address the impact of scheduling order,
we should at least consider it in the future as part of the

model verification and validation process through, for
example, showing that over the time span of simulation,
the consequence of scheduling order is negligible and
would not substantively affect conclusions to be made
from the corresponding ABM.

What Are the Surprises That Deserve More
Attention in CHANS Research?

Modeling complex systems such as CHANS us-
ing an ABM approach might give rise to many sur-
prising outcomes (J. Liu et al. 2007). Such surprises
could reveal essential mechanisms underlying CHANS
dynamics that might not be able to be detected using
other approaches, providing insightful hints for better
policy or management. We recommend paying atten-
tion to surprises that arise from unique features and in-
teractions within (and sometimes beyond) the CHANS
of interest, however, because these surprises might offer
clues and opportunities to obtain unknown CHANS
mechanisms and thus deserve more attention. Aside
from the example of habitat unresponsiveness beyond
5,000 m in Wolong, we believe that those emerging
outcomes from theoretical (e.g., the prisoners’ dilemma,
the El Farol Bar example; see Axelrod 1984 and Arthur
1994, respectively) and empirical (e.g., the macrolevel
land use patterns arising from agent “behavior and het-
erogeneity in the actors and the landscape”; Brown et al.
2008, 807) ABM experiments belong to this category.
The surprises that are relatively easy to detect or un-
derstand, although useful in providing understanding
of the system under investigation as well as in verify-
ing the ABM to some extent as mentioned earlier, do
not provide much “hidden” insight into the CHANS.
In addition to the examples presented earlier (sixteen-
year dormancy in Wolong and lagged response of fu-
elwood usage to population change in Chitwan), we
see these types of surprises in the literature such as the
fishbone (along the two sides of major road networks)
style of deforestation in the Amazon (Cabrera et al.
2012).

Equally (if not more) important is to identify various
surprises, which could come from errors in input data,
bugs in model code, or mistakes in ABM rules. During
construction of the Wolong and Chitwan ABMs, sur-
prises of this kind occurred; for example, a dead person
agent still goes to college, or a male person agent bears a
child. It is relatively easy to find mistakes of this nature
if the modeler pays enough attention to model verifica-
tion (this is one of the reasons we propose adding model
verification and validation to the ODD protocol). It
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is more difficult, however, to identify some “invisible”
(but seemingly reasonable) mistakes. For instance, an
earlier version of the Wolong ABM had a habitat jump
in panda habitat in year one. This surprise was later
found to arise from a bug in calculating panda habi-
tat after landscape and agent initialization. There is no
cure-all for this kind of problem, although several steps
should help; for example, making the code transparent
and making it subject to public screening and testing,
breaking complex (often long) code or processes into in-
dividual simpler submodels and testing them separately,
and running sensitivity and uncertainty tests (An et al.
2005).

Conclusion

Because of this article’s goals, we have focused on
several important issues or lessons through comparing
two CHANS ABMs. Our comparison of ABMs is a
necessary step toward better understanding the inter-
relationships between real people and real environ-
ments because of the large effect of ABM structure
on the outcomes of ABM models. Without comparing
ABM model structure directly, we cannot appreciate
the strengths and limitations of ABM model outcomes.

This type of ABM-focused pursuit, however, by no
means depreciates the importance of other non-ABM
approaches, especially the so-called top-down equation-
based models (Parker et al. 2008). From our work, we
can actually see the essential role of different statistical
models in providing parameter values or rules for both
the Wolong and Chitwan ABMs and in testing model
outcomes for statistical significance. Therefore, both
agent-based modeling and other top-down approaches
are complementary with one another (An et al. 2005;
An 2012). Although not a new finding, as with any
technique, agent-based modeling has its strengths and
weaknesses. Although ABM can capture many char-
acteristic features of CHANS, it is a data-intensive
modeling strategy, and there is still a high barrier for
novices to enter the field. Additionally, ABMs can be
difficult to communicate. A natural question follows:
When shall we consider using agent-based modeling in
CHANS research?

This is not an easy-to-answer question. We pro-
vide some insights from our comparison work here,
which does not exhaust all possible situations. First,
when feedback (or interaction in a broader sense) be-
tween different components is essential to the CHANS
processes under investigation, ABM has irreplaceable
power and might be worthy of consideration. The Chit-

wan ABM focuses on many feedback loops between
land use and population processes. Second (also related
to the first point), when systems integration (e.g., in-
tegration of data and models from multiple disciplines
and scales) and envisioning of systems dynamics un-
der different input parameters are prevalent goals of
the modeler, agent-based modeling has unique strength.
The Wolong ABM is an exercise in this regard, which
integrates data and models from geography, ecology,
sociodemography, and other disciplines. Third, when
dealing with human behavior and adaptation to so-
cial, societal, and environmental changes is of critical
importance, agent-based modeling might be the best
choice (An 2012). We have discussed how the Wolong
and Chitwan ABMs incorporate adaptation rules based
on empirically derived behavioral rules. For instance,
empirical studies have shown that a decrease in agri-
cultural land would lead to later marriages and lower
fertility rates, and this can be easily programmed in the
agent decision rules and implemented in the Chitwan
ABM. Aside from these three major situations, we ac-
knowledge other situations in which ABMs might also
be applicable, such as a context where high heterogene-
ity in agent or environmental attributes should not be
aggregated.

Although this article is based on one published model
(An et al. 2005; An and Liu 2010) and one model in
review (Zvoleff and An forthcoming), this article is
by no means simply a replication of these two mod-
els. Recent years have witnessed an increasing number
of agent-based modeling applications at different sites
and in different contexts (for an ABM review, see An
2012). Although these advances are important and nec-
essary for ABM development and CHANS research, it
is difficult, if not impossible, to distinguish between
commonalities and site specifics of CHANS ABMs by
separately considering individual case studies. This sit-
uation points to an urgent need for better synthesis of
multiple ABM results to enable generalization of find-
ings and advancement of the CHANS theory. This con-
text has inspired us to distill commonalities in CHANS
structure and processes, and to reflect such commonal-
ities in ABM methodology. The unique contributions
of this article, enumerated next, constitute a significant
advance toward this aim.

First, we have shown that different CHANS share
many common structures and processes of interest.
Comparing the two ABMs developed with substan-
tially different goals and contexts, we have found a large
amount of modeling similarities (e.g., see Figure 2 and
Tables 1–4). These similar modeling efforts could arise
from similarities in CHANS processes, which might
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further justify our comparative approach to better un-
derstanding CHANS structure and dynamics.

Second, we have proposed and demonstrated the use-
fulness of a modified ODD protocol in comparing and
distilling commonalities from different CHANS ABMs.
The ODD protocol provides a relatively straightforward
and standard way for modeling complex demographic
decisions, environmental processes, and human–
environment interactions in CHANS. As a common
infrastructure that we aim to bring into CHANS re-
search, the protocol helps CHANS researchers better
comprehend, compare, and envision CHANS structure
and process in a standard way that minimizes arbitrari-
ness in presenting or documenting ABM components.
Due to the complexity in CHANS, however, ABMs
of CHANS usually have more parameters and state
variables than specialist models that focus on individ-
ual components of a CHANS. Our modified CHANS
ODD protocol has less detail in most areas than a full
ODD description, as shown earlier and summarized in
Table 1. The primary purpose of this modified CHANS
ODD protocol, we argue, should be on description for
a wider audience.

Additionally, we have enriched the standard ODD
protocol by adding two essential components to en-
hance the accessibility of CHANS model descriptions
and to ensure their applicability to a broad audience. As
CHANS ABMs are often used as tools for policy rec-
ommendation or analysis, it is important that modelers
and users be familiar with the process used to evalu-
ate CHANS ABMs. For this reason, we add a “Model
Verification and Validation” section to the ODD proto-
col. The verification and validation process ensures that
models function as expected and helps to give modelers
and analysts a measure of the uncertainty in model out-
comes. In addition, we add another section to the ODD
protocol: “CHANS Characteristic Features.” We feel
that it is important to provide a space in the standard
protocol for CHANS modelers to outline the key com-
plexity features of CHANS model outcomes, as these
features can have great importance for policymakers.
Although traditional ODD focuses on details of model
implementation, evaluating model outcomes (with a
focus on complexity features) is essential for policy de-
sign and implementation. With these modifications to
ODD, we hope to reduce the need for readers to consult
separate literatures as they make use of CHANS ABMs.

Last but not least, another contribution of this arti-
cle is technical development that facilitates CHANS-
related agent-based modeling, including the online
pseudo-code and preliminary library of reusable mod-
ules in Netlogo, and our test of the importance of

scheduling order in ABM modules. All of these fea-
tures, not previously explored with the Chitwan and
Wolong models, should be particularly useful for ABM
novices. Aside from embarking on building and testing
CHANS ABMs, we provide insights into interpreting
agent-based modeling outcomes in the hope that more
attention be directed toward surprising outcomes, as
these outcomes might offer clues or opportunities to
better understand CHANS structure and mechanisms.

In summary, this article addresses the difficulty in
documenting and comparing CHANS ABMs with an
aim to generalize common features from site-specific
case studies in CHANS research. We have proposed
a standardized approach to model documentation and
comparison based on the modified and expanded ODD
protocol, highlighted the commonalities of CHANS
ABMs, and pointed out the need for further work on
surprises in CHANS and on several technical issues
yet to be addressed by the CHANS modeling com-
munity. This article began to build CHANS-related
pseudo-code and a preliminary library of reusable mod-
ules, a pursuit with substantial long-term potential for
advancing the ABM methodology. It is our hope that
future work, using a similar comparative approach, will
synthesize more new and existing CHANS case studies
and further development of the theory of CHANS.
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and Chitwan ABMs are discussed in this article—for a
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associated state variables in the two models, see the
supplementary material named “6. ABM-comparison
Online Supplement 20140501.pdf” provided at
http://complexity.sdsu.edu/CHANS-ABMs/6.ABM-
comparison Online Supplement 20130427.pdf and
on the publisher’s Web site at http://dx.doi/org/
10.1080/00045608.2014.910085.
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