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a  b  s t  r  a c t

Coupled  human and natural  systems  (CHANS)  manifest  various complexities such as  heterogeneity, non

linearity,  feedback, and emergence.  Humans  play a  critical role  in affecting  such systems  and in giving rise

to various environmental  consequences, which may in turn  affect future human  decisions  and  behavior.

In  light  of complexity  theory and its  application  in  CHANS,  this paper reviews various  decision  models

used  in  agent  based simulations of  CHANS  dynamics, discussing  their strengths and weaknesses. This

paper concludes by  advocating development of more  processbased  decision models as well  as protocols

or architectures  that  facilitate  better modeling  of  human  decisions in  various  CHANS.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Human–nature systems used to be studied in  separation, either

as human systems constrained by or with input  from/output to nat

ural systems (usually including the physical environment and the

corresponding ecosystem), or as natural systems subject to human

disturbance. This chasm between natural and social sciences, along

with such unidirectional connections between natural and human

systems, has hindered better understanding of complexity (e.g.,

feedback, nonlinearity and thresholds, heterogeneity, time lags) in

coupled human and natural systems (CHANS; Liu  et al., 2007). This

context has given rise to many theoretical and empirical research

efforts in studying CHANS (see Sections 1.1 and 1.3),  emphasizing

the aforementioned complexity features.

Synthetic analysis of such research efforts has revealed the

multiscalar and crossdisciplinary nature of  much empirical

CHANS related research (e.g., Bian, 1997; Phillips, 1999; Walsh

et al., 1999; Manson, 2008) as  well as many similar complex

phenomena shared by CHANS systems. For instance, researchers

documented the above complexity features at six sites around the

world (Liu et al., 2007). Corroborating evidence for these features

also comes from empirical work in  the Amazon (Malanson et al.,

2006a,b), the  southern Yucatán (Manson, 2005), Wolong Nature

Reserve of China (An  et al., 2005, 2006), Northern Ecuador (Walsh

et al., 2008), and  other places around the  world. Indeed, such  com

plexity has been the subject of an emerging discipline: complexity

theory.
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1.1. Complexity theory

Partially originating from general systems theory (von

Bertalanffy, 1968; Warren et al., 1998), complexity theory

has been developed with input from fields such as physics, genetic

biology, and computer science. Recently receiving considerable

attention (Malanson, 1999; O’Sullivan, 2004),  this line of research

focuses on understanding complex systems (or “complex adaptive

systems”). Complex systems usually encompass heterogeneous

subsystems or autonomous entities, which often feature nonlinear

relationships and multiple interactions (e.g., feedback, learning,

adaptation) among them (Arthur, 1999;  Axelrod and Cohen, 1999;

Manson, 2001; Crawford et al., 2005).

Complexity can  be manifested in  many forms, including path

dependence, criticality, selforganization, difficulty of prediction,

and emergence of qualities not analytically tractable from system

components and their attributes alone (Solé and Goodwin, 2000;

Manson, 2001; Bankes, 2002).  Hence researchers have suggested

placing more emphasis on  understanding and improving the  sys

tem of interest rather than fully controlling the system or seeking

the “orderly and predictable relationship between cause and effect”

(Solé and Goodwin, 2000). It  is suggested that rather than being

treated as  a  cureall solution, the complex systems approach be

employed as a  systematic paradigm to  harness (but not ignore

or eliminate) complexity and take  innovative action to steer  the

system in beneficial directions (Axelrod and Cohen, 1999).

Even with the above theoretical advancements and technical

development (ABM in  particular; see  below), complexity theory

is still considered to be in its infancy, lacking a clear conceptual

framework and unique techniques, as well as  ontological and epis

temological representations of complexity (Manson, 2001; Parker

et al., 2003;  Grimm et al., 2005;  Manson and O’Sullivan, 2006).
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1.2. Agentbased modeling

Like cellular automata (Batty et al., 1994,1997; Clarke and

Gaydos, 1998; Malanson et al., 2006a,b), agentbased modeling

(ABM) has become a major bottomup tool  that has been exten

sively employed to understand complexity in many theoretical

(e.g., Epstein and  Axtell, 1996; Axelrod and Cohen, 1999; Axtell

et al., 2002) and empirical (see Section 1.3) studies. What is an

agentbased model? In the terms of Farmer and Foley (2009),  “An

agentbased model is a computerized simulation of a number of

decisionmakers (agents) and institutions, which interact through

prescribed rules.” By and large, such agents are embedded in and

interacting with a dynamic environment, having the capacity to

learn and adapt in response to changes in other agents and the

environment. The ABM method has a  fundamental philosophy

of methodological individualism, which advocates a focus on the

uniqueness of individuals and interactions among them,  and warns

that aggregation of individuals may  give rise to misleading results

(Gimblett, 2002; Bousquet and Le Page, 2004). Readers interested

in  ABM are referred to Grimm (1999),  Gimblett (2002),  and Gilbert

(2008).

Agentbased modeling has an intellectual origin from a com

puter science paradigm called objectoriented programming,

which has become popular since the  1980s with the advent of

fast computers and rapid advancement in computer science. This

paradigm “groups operations and data (or behavior and state) into

modular units called objects” (An et al., 2005),  and lets the user

organize objects into a  structured network (Larkin and Wilson,

1999). Each object carries its own attributes (data) and actions

(methods) with a separation between interface and implemen

tation (technical details). This separation hides technical details

(parts of a clock) inside the system surface (interface of the clock;

Fig. 1). The “implementation” feature makes the  system work, while

the userfriendly interface running above  the system details “pro

vides simple data input, output, and display functions so that other

objects (or users) can call or use them” (An et al., 2005).

The ABM approach has also benefited abundantly from many

other disciplines, which are still fertilizing it. Among these dis

ciplines, research on artificial intelligence (AI) is noteworthy, in

which multiple heterogeneous agents are coordinated to solve

planning problems (Bousquet and Le Page, 2004). Also contribut

ing to ABM development is  artificial life research, which explores

“life as it might be rather than life as it is” (Langton, 1988).

Many social sciences are also nourishing ABM. For instance,

strategies adopted by  rational agents are developed in cognitive

psychology and game theory; sociology is credited with defin

ing modes of and modeling interactions between agents and

their environments (Bousquet and Le Page, 2004). In studying

social behavior and interactions, ABM usually starts with a  set of

assumptions derived from the real world (deduction), and produces

simulationbased data that can be analyzed (induction). Hence

Fig. 1. Objectoriented programming with separation between implementation and

surface.

Source:  reprint with approval from the publisher, see  An et  al. (2005).

Axelrod (1997)  considers ABM a “third way” in scientific research,

which complements the  traditional inductive and deductive

approaches.

ABM  has  been  used to predict or envision the  phenomena of

interest (although some scholars  may doubt ABM’s usefulness in

complex systems; e.g., Couclelis, 2001),  to understand the  system

under investigation, and to answer many “what if . . .” questions

using the ABM as a  “virtual landscape lab for conducting numerical

experiments” (Seppelt et al., 2009). ABM also facilitates theorizing

based on observations, e.g., comparing ABM outcomes to math

ematical models. Despite these strengths, ABMs face limitations

such as lack of  predictive power at local spatial scales, difficulty

in validation and verification (Lempert, 2002; Parker et al., 2003;

Matthews et  al., 2007), and a  shortage of effective architectures and

protocols (e.g.,  graphic languages, scale and hierarchy definitions)

to represent agents and their interactions (Bousquet and Le  Page,

2004). Particularly, learning processes (as parts of or  precursors to

decision making) of real world decision makers  have been poorly

represented (Bousquet and Le  Page, 2004).

1.3. Complexity research in CHANS

The application of  complexity theory and its  major  tool  ABM in

CHANS is  still relatively recent, which can  be largely summarized

in three threads. The first is the  thread of  individualbased model

ing (IBM) in  ecology. This line of research started in the 1970s and

advanced in  the  1980s, characterized by relatively “pure” ecological

studies (thus not CHANS studies in a strict  sense) that have con

tributed to later CHANSrelated ABM development. Exemplar work

includes research on  the bee  colony (Hogeweg and Hesper, 1983),

animats (agents that  are located in  space and may move or repro

duce; Wilson, 1987; Ginot et  al., 2002), “Boids” (Reynolds, 1987),

and Bachman’s sparrow (Pulliam et al., 1992). Even though IBM

and ABM are considered largely equivalent, some features differ

entiate one from the other. While IBM  focuses more on  the  role of

heterogeneity and uniqueness of individuals, ABM, with substan

tial contribution from computer science and social sciences, gives

more attention to the decisionmaking process of agents and their

contextual social organizations (Bousquet and Le Page, 2004).

The second thread of ABM use in CHANS is  characterized by  con

ceptual or theoretical tests in social science fields (e.g., “thought

experiments”). Work under this domain has become popular since

the 1970s, including the segregation models of Sakoda (1971) and

Schelling (1971), the prisoners’ dilemma for testing cooperative

strategies (Axelrod and Dion, 1988), emergence from  social life  sim

ulations (e.g., the SugarScape model; Epstein and Axtell, 1996), and

social generative research in complex adaptive systems (Epstein,

2006; Miller and  Page, 2007). Such efforts, usually made in  virtual

environments, feature ad  hoc rules that are used to test ‘what if’ sce

narios or  explore emergent patterns. Efforts have also been invested

to  answer archaeological questions using ABM, such as how  or

why certain prehistoric/ancient people  abandoned settlements or

adapted to changing environmental conditions (e.g.,  Axtell et  al.,

2002; Kohler et al., 1996; Altaweel, 2008;  Morrison and Addison,

2008). Such efforts, closely related to explorations in  game theory

and complex adaptive systems (CAS), are  precursors of modeling

empirical CHANS below.

The third and last thread features applying ABM to realistic

CHANS based on  empirical data, which is  usually coupled with

cellular models (e.g., cellular automata) to spatially represent the

environment. In  tandem with the above theoretical advancements,

empirical support, especially data about human systems, is consid

ered  essential in  advancing our understanding of  complex systems

(Parker et al., 2003; Veldkamp and Verburg, 2004). Recent years

has witnessed considerable work devoted to the  advancement

of complexity theory and application of  ABM in  CHANS (e.g.,
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Benenson, 1999; Grimm,  1999; Kohler and Gumerman, 2000; Irwin

and Geoghegan, 2001; Gimblett, 2002; Henrickson and McKelvey,

2002; Deadman et al., 2004; Evans and Kelly, 2004; An et  al.,

2006; Crawford et al., 2005; Fernandez et al., 2005; Goodchild,

2005; Grimm et al., 2005; Messina and Walsh, 2005; Sengupta

et al., 2005; Portugali, 2006; Uprichard and Byrne, 2006; Wilson,

2006; LigmannZielinska and Jankowski, 2007; Brown et  al., 2008;

Yu et al., 2009). Also contributing to complexity theory is the

research on cellular automata and urban development (Benenson

and Torrens, 2004; Batty, 2005, 2007). The rising attention to

complexity theory is further evidenced by multiple complexity

theory sessions at the annual conferences of  the  Association of

American Geographers (AAG) in recent years, the NSFsponsored

International Network of Research on Coupled Human and Natural

Systems (CHANSNet; established in 2008), and six CHANS related

symposia held at the 2011 AAAS  annual meeting in Washington,

DC.

Several major advantages credited to  ABM have made it  power

ful in modeling CHANS systems. First, ABM has a  unique power to

model individual decision making while incorporating heterogene

ity and interaction/feedback (Gimblett, 2002). A range of behavior

theories or models, e.g., econometric models and bounded ratio

nality theory (reviewed later in  this article), can be used to model

human decisions and subsequent actions. Second, ABM is able

to incorporate social/ecological processes, structure, norms, and

institutional factors (e.g., Hare and Deadman, 2004). Agents can  be

created to carry or implement these features, making it possible to

“[put] people into place (local social and spatial  context)” (Entwisle,

2007). This complements current GIS functionality, which focuses

on representing form (i.e., “how the world looks”) rather than pro

cess (i.e., “how it works”; Goodchild, 2004). This advantage makes

it technically smooth to couple human and natural systems in an

ABM.

CHANS, largely similar to social–ecological systems (SESs) by

Ostrom (2007),  may  have many human and nonhuman pro

cesses operating at multiple tiers that are  hierarchically nested

(Ostrom, 2009). Efforts devoted to understanding such processes

from various disciplines have generated a large amount of findings.

However, “without a common framework to organize findings, iso

lated knowledge does not cumulate” (Ostrom, 2009),  preventing

researchers from effectively addressing the above complexity. ABM

is  credited with having the flexibility to incorporate multiscale and

multidisciplinary knowledge, to “coordinate a  range of qualitative

and quantitative approaches” (Bithell et al., 2008), and  mobilize

the simulated world (An et al., 2005; Matthews et  al., 2007). Con

sequently, agentbased modeling is believed to have  the potential

to facilitate methodologically defensible comparisons across case

study sites. For example, ABM was  used to synthesize several key

studies of frontier land use change around the world (Rindfuss et al.,

2007).

1.4. Modeling human decision making in  CHANS

In the process of truly coupling the human systems and natural

systems within any CHANS, the  importance of understanding how

human decisions are made and then put into  practice can never

be exaggerated (Gimblett, 2002). Human decisions and subsequent

actions would change (at least affect) the structure and function

of many natural systems. Such structural and functional changes

would in turn exert influence on human decisions and actions.

Nonetheless, seeking fundamental insights into human decision or

behavior, though of paramount value, is beyond the scope of  this

paper (even beyond the scope of one discipline). The goal of  this

paper is  to review how existing understanding of  human decision

making and behavior has been used to model human decisions in

CHANS. It is hoped that this review will  benefit CHANS researchers

by shedding light upon the  following perspectives (objectives of

this  paper):

(a) What methods, in  what manner, have been  used to model

human decisionmaking and behavior?

(b) What are the  potential strengths and caveats of these methods?

(c) What improvements can be made to better model human deci

sions in  CHANS?

Given the previously mentioned characteristics of  complex sys

tems, especially those in CHANS, as  well as the power of  ABM in

modeling and understanding human decisions, this paper limits

the review to how human decisions are modeled in recent CHANS

related ABM work.

2. Methods

To  achieve the above goal and the specific objectives, a collec

tion  of articles was assembled through three  steps. The  first step

was  a search on Web  of Science using the following combination of

Keywords: Topic =  ((agent based modeling) or (multiagent model

ing) or  (agent  based simulation) or  (multiagent simulation)) AND

Topic  = ((land use) or (land cover)  or  geography or habitat or geo

graphical or ecology or ecological) AND Topic =  ((human decision

making) or (environment or environmental)).

The first topic defines the  tool  of  interest: only work using

agentbased modeling (as this is  the focus of  this paper). Given

that different authors use slightly different phrasing, this paper

incorporated the mostcommonly used alternative terms such as

multiagent simulation. The term “individual based  modeling” was

not  used as  one  of the key words because as  a term predominantly

used by  ecologists, it involves work largely in  the “purely” ecologi

cal  domain and rarely contains research directly related to human

decisions in CHANS. The second topic  restricts the search to be

within areas of land use and land  cover change, geography, and

ecology.1 This decision is based on  our  interest in work in these

areas that  characterize research related to CHANS systems.

The third topic reflects the major interest of  this paper, which

relates to human decisions that give rise to environmental conse

quences. We  also include papers on  all humanrelated agents, e.g.,

individual persons, households, or groups. This paper did  not use

“AND” to connect the two parts because this is too restrictive and

many relevant papers  (including several renowned ones of which

the author is aware) are filtered out.

The second step, according to a suggestion from an anonymous

reviewer, was  a  search on  Web  of Science using the following

combination of Keywords: Topic =  (agent AND (farmers OR farm

ing) AND decision AND land). This search complements the above

search that was  relatively ineffective in  finding several important

articles related to farmers’ land use decisions.

The third step is complementary to the first, which assembles

articles through the author’s personal archive that  has been estab

lished since 2002. This archive also includes relevant books  or  book

chapters that are not in  the database on Web  of Science, but that  the

author knows of (in  regard to using ABM in CHANS). These papers,

books, or book chapters assembled in  the past nine years are also

used to evaluate the completeness of the above online search.

1 Keywords like “anthropology” or “archaeology” are not used simply because

doing  so greatly increases the number of papers found and most of  them are not

relevant to  the topic of this paper. Without using such  keywords some papers have

still  been found that are related to using ABM to  study anthropologic phenomena

such prehistoric settlement (see Section 1.3).
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Fig. 2. Dynamics of  publications related to the ABM  based on  our  search criteria

(1994–2010).

3.  Results

In the above online search, 155  articles2 were found to be pub

lished on the topics of interest from 1994 to 2010 from the  first step.

Out of these 155 articles, 69 were beyond our planned scope (e.g.,

in pure ecology or cell biology), i.e., they do not fit the above criteria

(expressed by the above keywords). The second step resulted in  26

articles, 7  of which were chosen for review after removing those

considered to be irrelevant or redundant (i.e., already selected in

the above search). From the third step, 28 publications (i.e., papers,

book chapters, or  books) were  found. Therefore a  total number of

121 publications were included in this review, which  comprises the

reference list.

Under these search criteria, it appears that  ecologists and geog

raphers take the lion’s share in CHANS related ABM work. The top

six journals were Ecological Modeling (11 related papers), Environ

mental Modeling & Software (11), Environment and Planning B (6),

Geoforum (6), Journal of Environmental Management (6), and Agricul

ture, Ecosystems &  Environment (5). The publications in  this domain

have increased linearly from 1994 to 2010 (Fig. 2). This article did

not include the counts in 2011 (2 at submission of this paper in

February) because many are still incoming and thus unable to be

included.

Before getting to the major findings, it  is important to intro

duce how data related to human  decisions are collected as well

as how agents are characterized. Data collection for agentbased

models, especially for modeling real  CHANS, is  usually very time

consuming and sometimes considered as a drawback of this

approach (Gimblett, 2002). Various means, such as  direct  obser

vations (e.g., Miller et al., 2010), surveys or interviews (e.g., Saqalli

et al., 2010), government archives (e.g., An et al., 2005),  remote

sensing and GIS (e.g., Gimblett, 2002), and/or statistical census or

surveys were used to acquire data that  facilitate modeling human

decisions. When data are readily collected, agents in  related CHANS

models are usually assigned with real data collected at  the same

level (e.g., An et  al., 2005)  or data sampled from aggregate (statis

tical) distributions or histograms (usually available from  a higher

level such as population; Miller et al., 2010). In modeling land use

2 If “individual based modeling” is added as part of the search key words, 308

papers are found. The vast majority of these added 153 papers have nothing to  do

with human decision making and are thus considered irrelevant.

decisions, data are often only available at the  latter (aggregate) level

(Parker et al., 2008).

Overuse of aggregate distributional or  histogram data may  risk

losing the  strength of ABM because such data may  lead  to average

“agents”. Heterogeneity of agents plays  a critical role in deciding

how  agents interact, feedback, react, and adapt (Matthews et al.,

2007). Also such overuse may  lead to hidden or implicit conflicts

between those characteristics assigned to agents, e.g., a  newly

established household assigned to be located at a high elevation

(near the maximum in the survey data) may  be also “given” a  large

amount of  cropland, which, for example, is  not very likely to  hap

pen in the  panda reserve of An et al.’s (2005) model. To  some

degree, attention to correlation among variables can  avoid this

problem – with conditional probability distributions and regression

results allowing heterogeneity in agent characteristics while avoid

ing conflicting sets of attribute values (Zvoleff and An, submitted

for publication).

Below a  total of nine types of decision models (each type

as  one subsection) are summarized and presented based on  my

review of the  set of articles in relation to modeling human  deci

sion in  CHANS. These decision models include microeconomic

models, space theory based models, psychosocial and cognitive

models, institutionbased models, experience or preferencebased

decision models (rules of  thumb), participatory agentbased mod

eling, empirical or  heuristic rules, evolutionary programming, and

assumption and/or calibrationbased rules. A  certain paper may use

multiple decision models, and this  review does not intend to iden

tify and recognize all of them. Instead, this  article aims to  extract

generic decision models that are typically used in  CHANS related

ABMs. Also worthy of mention is that decision models and deci

sion rules are used interchangeably in  this  article.  Although actions,

behaviors, and decisions are not exactly equivalent (e.g., an action

may  come out as  a result of a decision), these terms are used also

interchangeably in  the  context of the above goal and objectives

(Section 1.4).

3.1. Microeconomic models

Here the  microeconomic models (or  rules)  refer to the  ones that

are usually used for resource related decisions. Agents make deci

sions to maximize certain profit, revenue, or rate  of profit (e.g.,

Plummer et al., 1999) associated with various optional activities

such as  transactions and renting while not violating any constraints

(e.g.,  Parker and Meretsky, 2004; Purnomo et al., 2005; Evans et  al.,

2006; Fowler, 2007; Monticino et  al., 2007; Schreinemachers et al.,

2007;  Acevedo et al., 2008; Evans and Kelly, 2008; Li and Liu,  2008;

Millington et al., 2008; Filatova et al., 2009;  Gibon et al., 2010; Miller

et al., 2010; Saqalli et al., 2010). In many instances, certain more

abstract utility functions (e.g., the Cobb–Douglas utility function;

see Chiang, 1984), which  sometimes includes consumption, aspi

ration (e.g., Simon, 1955; Gotts et al., 2003), or ecological indicators

(e.g., Nautiyal and Kaechele, 2009), are used in place  of monetary

income. These functions often take an additive or exponential form

of a  weighted linear combination of many criteria under considera

tion (e.g., Jager et  al., 2000; Brown et  al., 2004; Brown and Robinson,

2006; Bennett and Tang, 2006; Liu et al., 2006; Zellner et al., 2008;

Chu et al., 2009; Le  et al., 2008,2010). With such  a utility definition

(exponential form), it  is  possible to calculate the probability of  an

agent’s choosing one option (e.g., one site or one opportunity) as

the probability that the utility  of that option is more than or equal to

that of any other option based on McFadden’s theorem (McFadden,

1974).

Whichever method is in use, the agents are often assumed to

make rational choices. It  is believed that  in  the real world, such

choices or  decisions are  usually affected, constrained, or bounded

by imperfect resources (including knowledge and information) or
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limited ability to make use of such resources (Bell  et al., 1988;

Simon, 1997). This line of bounded rationality can also be seen

from the literature of behavioral decision theory, which posits

that agents should be limited  in their environmental knowledge,

and their decisions should be made relatively simply. Further

more, agents tend to seek satisfactory rather than optimal utility

when making relevant decisions (Kulik and Baker,  2008). Microe

conomic models, subject to these modifications or restrictions, are

employed in numerous empirical studies. Examples include the

land use agents who choose sites for various land use purposes

(Brown and Robinson, 2006; Brown et al., 2008; Reeves and Zellner,

2010), the farmers who choose sites and routes to collect fuelwood

(An et al., 2005), and land buyers in  a  coastal township who search

for the location that maximizes their utility function constrained

by their budget (Filatova et al., 2011). Variants of microeconomic

models include calculation of a  preference function for a  particular

land use at a location (Ligtenberg et al., 2010; Chu et  al.,  2009).

All these examples are characterized by  one common feature:

computing a  certain utility (could also be named Potential Attrac

tiveness; Fontaine and Rounsevell, 2009) value for available options

and then choosing the one with the best (maximum or minimum)

or satisfactory value. However, choices when using microeconomic

models are made based on both science (guided by  solid microe

conomic theory) and art (based on the  modeler’s perception of  the

system under investigation). For instance, what variables, in  what

form (e.g., linear combination of the chosen variables), should enter

the utility function. CHANS modelers should be aware of, and cau

tious about, these caveats when using microeconomic models.

3.2. Space theory based models

Geographic theories treat distance differently. Absolute distance

between locations is often considered when individuals make deci

sions, giving rise to theories of absolute space. Christaller’s central

place theory (Christaller, 1933) and von Thünen’s circles of pro

duction (von Thünen, 1826)  belong to this set of theories. When

household agents evaluate candidate sites  for their residential loca

tion in the HILIFE model (Household Interactions through LIFE

cycle stages; Fontaine and Rounsevell, 2009), the Euclidean dis

tances to the closest physical and social features (e.g., the main

road network, train stations, key service areas, large cities) are

incorporated in calculating each site’s Potential Attractiveness (PA).

Distances to thelike physical and social features (e.g., peace and

order situation) are also considered in the agentbased models of

Loibl and Toetzer (2003), Brown et al.  (2004),  Huigen et al. (2006),

and Li and Liu (2008).

The characteristics of a certain location in  space (e.g., slope) as

well as its location relative to other locations also affect the “attrac

tiveness” (Loibl and Toetzer, 2003)  of a  certain site, thus affecting

individual agents’ choice of location for a  certain purpose. This

accounts for the theories of relative space. For instance, the environ

mental amenities (e.g., closeness or  availability of coastlines, water

bodies, and green areas such  as national parks) belong to the rela

tive space consideration (Brown et al., 2004, 2008; Yin and Muller,

2007; Fontaine and Rounsevell, 2009). This relative space consid

eration emphasizes the relative positioning (not  absolute travel

distance or geographic coordinates) of a certain site in  the corre

sponding social and environmental context. Readers interested in

issues on relative/absolute space are referred to the communication

literature (e.g., Sack, 1980; Graham, 1998; Adams, 2010).

Under these two lines of theory, an agent  “calculates” the  suit

ability of a given location for a  certain purpose as  a function

of variables that represent both absolute and relative locations

(Manson, 2006). This calculation process may  involve indirect

communications with other agents mediated by the modified

environment (i.e., “stigmergy”; see Dorigo et  al., 2000). This is

so because each location contains a  repertoire of  multilayered

information, which buttresses the  so  called layered artificial intel

ligence method (e.g., Banerjee et al., 2008). Such repertoire usually

consists of elements related to current or  historical environmen

tal and socioeconomic changes, including influences from other

agents’ actions. There is, however, certain degree of arbitrariness

in  deciding what environmental/socioeconomic elements and what

(usually linear) relationships between the agent’s decision(s) and

the chosen elements should  enter the  model of  interest. Also more

justification is  needed for the arbitrary (usually equal) weights of

different distance or environmental amenity variables (e.g., Loibl

and Toetzer, 2003).

3.3. Psychosocial and cognitive models

Agents make decisions based on  their own cognitive maps

(e.g., concepts) or abilities (e.g., memory, learning, and innovation),

beliefs or intentions, aspirations, reputation of  other agents, and

social norms (e.g.,  Simon, 1955,1960; Ligtenberg et al., 2004; Fox

et al., 2002). There are  several models along this line  that are worth

mentioning as  they  aim to “[represent] the  net  effect of people’s

thought processes” (Bithell et al., 2008).

First, the actorcentered structuration theory (ST) states  that

actors influence, and simultaneously are influenced by, social struc

tures, which reflects the concept of  duality of structure (Giddens,

1984). This theory conceptualizes a  recursive social reproduction,

which is  in line with what  is termed as  circular causality or feed

back  in many complex adaptive systems such  as CHANS (Janssen

and Ostrom, 2006; Feola and Binder, 2010). Another related the

ory is the  theory of interpersonal behavior (TIB), which posits

that intentions, habit, physiological arousal, and contextual fac

tors exert impacts on  agent  decisions (Triandis, 1980). In  one

example inspired by  these two theories, a  conceptual Integrative

AgentCentered (IAC) Framework was developed to integrate the

strengths of these two theories in explaining human  behavior: the

ability of ST to incorporate feedback or  micromacro level interac

tion as well as  the ability of  TIB to provide a  structure of  behavioral

drivers in empirical research. In predicting potato  producers’ pes

ticide use in Boyacá, the Colombian Andes, data regarding a  set  of

behavioral drivers (e.g., social norm, expected consequence of using

pesticide chosen according to TIB) were collected and exposed

to binomial and multinomial logistic regressions to estimate the

coefficients of these drivers and derive probability of using cer

tain pesticides (Feola and Binder, 2010). If the following additional

steps had been done, the IAC framework would have been  substan

tially  strengthened: build an ABM, characterize the  agents using

the above survey and regression results, run the ABM, and let  the

agents review the macro patterns as  a result of  their earlier  micro

level pesticide use decisions (feedback is thus incorporated), and

decide what to do in  the future.

Second, fuzzy cognitive maps (FCM) are potentially very use

ful in  modeling human  decisions and behavior in CHANS. The

FCMs,  derived from cognitive maps that were originally introduced

by psychologists to model complex human or animal behaviors

(Tolman, 1948), are graphs that  contain a  set of nodes (concepts)

and a  set of  directional edges (each edge representing the influ

ence of a concept on another). FCMs are  mainly used to describe

and compute agent behavior in biological or ecological studies (e.g.,

predator–prey simulation, Gras et al., 2009).  FCM related empirical

research devoted to simulating human–environment interaction in

CHANS has been minimal.

Third and last, computational organization theory is  also poten

tially useful in modeling human decisions in  CHANS. With  input

from social psychology, this theory claims that individual agents

learn  about their environments along preconceived biases, and

influence other  peer agents to adopt the same  biases (Weick, 1979).
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Chen et al. 2012 report that a  10% reduction in neighboring house

holds who participate in a conservation program, regardless of

reasons, would decrease the likelihood that the  household would

participate in the same program by an  average of 3.5%. At the

Caparo Forest Reserve in  Venezuela, land occupation decisions are

strongly influenced by imitation and social learning among indi

vidual landowners as a way  to secure a  “better way of life” (Terán

et al., 2007).

Along this line, more research should be  devoted to the  role

of social networks in  affecting human decisions. The quality of

social networks (e.g., some members in  the network have higher

influences on other members) may  determine how actions may

arise from interactions (e.g., Barreteau and Bousquet, 2000; Acosta

Michlik and Espaldon, 2008; Christakis and Fowler, 2009). Research

in communication, marketing, and diffusion (e.g., adoption of

innovations) could provide helpful conceptual frameworks or

guidelines for modeling human decisions in  CHANS. For instance,

decisions of agents in  a certain system may  be explained by these

agents’ motivation, knowledge, and skills (Spitzberg, 2009); a  small

minority of opinion leaders may  disproportionately affect or shift

the mass opinion on  a certain topic (Katz and Lazarsfeld, 1955;

Merton, 1968; Watts and Dodds, 2007). Also in  understanding

recreational decisions, cognitive assessment models (e.g., Kaplan’s

Information Processing Model; Kaplan and Kaplan, 1982) are useful.

They provide fundamental understanding of  how humans evaluate

landscape quality and make subsequent decisions (Deadman and

Gimblett, 1994).

3.4. Institutionbased models

To a large extent, institutionbased models are inextricably

linked to the above cognitive models because institutions can be

considered as a  special type of  social norm that is established

through law or policy. Institutions can explain why there are sim

ilarities across agents. Institutional theory postulates that agents

in the same environment copy each other either because they  are

forced to (government regulation) or to gain legitimacy from copy

ing other sameenvironment members’ strategies (DiMaggio and

Powell, 1983). For example, a person agent may consider marriage

at a  certain probability at the age of 22, the minimum age  for mar

riage legally mandated in China (An et al., 2005). In another CHANS,

the household agents could not perform their production activities

outside their own ejidos (land management and ownership units)

or sell land to outsiders before the neoliberal policy shift in  the

southern Yucatán (Manson, 2006).

Institutions may  take a  number of forms. In  modeling location

and migration decisions of firms (agents), subsidies, tax reductions,

and/or environmental standards (enforced by  governments) play a

critical role in impacting the mobility of small and medium size

firms (Maoh and Kanaroglou, 2007). The pastoralist enterprises in

Australian rangelands, through conforming to policies from gov

ernments and/or land brokers, may  adopt different strategies (e.g.,

selling, destocking, or restocking cattle; Gross et al.,  2006). In the

simulation model of whalewatching tours in  the St. Lawrence Estu

ary in Quebec, Canada, boat agents are  required by  regulation to

share whale location information among other agents (Anwar et al.,

2007). Buyer and seller agents make land transactions, subject to

local policy and regulations (e.g., minimum parcel size), in the pro

cess of seeking maximum economic returns (Lei et al., 2005).

3.5. Experience or preferencebased decision models (rules of

thumb)

Experience or preferencebased decision models are usually

effective realworld strategies that can be articulated or induc

tively derived from data (both quantitative and qualitative), direct

observations, ethnographic histories (e.g.,  “translating” narratives

or life histories from  the field into a  computerized model; Huigen,

2004; Huigen et al., 2006; Matthews, 2006), or  “stylized facts

abstracted from realworld studies” (Albino et  al., 2006). They

are often simple, straightforward, and selfevident without much

need for additional justification.

Examples using this type of decision model are many. When a

new house (agent) is  set up, the  vegetation in its location and sur

rounding area is cleared up (Bithell and Brasington, 2009; An  and

Liu, 2010). When clearing forests, the  households in the southern

Yucatán will “clear secondary forest  when the primary forest is  too

far from  my  location” (Manson and Evans, 2007). Human agents

living with the huntergatherer lifestyle “first search for animals

in their present location (cell) to hunt, and if successful, consume

the animal. Otherwise, . . .  [they]  move to adjacent cells to hunt.”

(Wainwright, 2008). In deciding what to plant or simply fallow,

household agents check their subsistence needs, soil quality, capi

tal, and labor in  a  hierarchically connected manner (Deadman et  al.,

2004). In the  Caparo tropical  forest reserve in  Venezuela, a settler

agent performs subsistenceoriented activities such as  “slash and

burn” after he/she takes possession of a  parcel of land  in the reserve

(Moreno et al., 2007).

Along this line, artificial intelligence algorithms (e.g., learning

classifier; Holland and Holyoak, 1989), often combined with expert

knowledge and some degree of fuzzy  logic, have been developed to

solicit agents’ decision rules in  a manner consistent with our under

standing of reality (e.g., Roberts et al., 2002; An et al., 2005; Wilson,

2007). Such rules or  strategies are  often dynamic  and subject to evo

lution (see Section 3.8 for  one way  to capture such  evolution). In

modeling prehistoric settlement systems (e.g., Kohler et al., 1996)

or human–environment interactions (e.g., Axtell et al., 2002), most

of the decision rules (if not all) are derived this way unless there

are historically documented analogs.

3.6. Participatory agentbased modeling

A variant in the family of  experience or preferencebased deci

sion models (Section 3.5) is  the  so  called participatory agentbased

modeling in  which real people directly tell the  modeler what

they would do under certain conditions (Purnomo et  al., 2005;

Simon and Etienne, 2010). Put another way, participatory ABM

involves stakeholders in an iterative process of  describing contexts

(e.g., local environment, the  ABM), soliciting decisions, running

the ABM, and envisioning scenarios arising from  the correspond

ing  decisions. One major rationale for  participatory ABM is that  in

modeling CHANS, it is often a challenge to communicate between

specialists (e.g., ABM modelers) and nonspecialists. Stakeholders,

nonspecialists in most situations, do not easily envision or under

stand the (often) nonlinear linkages between their decisions and

the environmental consequences within the system of interest.

The participatory ABMgenerated scenarios can  help  stakehold

ers make this linkage, quite often in a  spatially explicit manner.

Agents are considered as  individuals with autonomy and intelli

gence, who keep learning from  (thus updating their knowledge

base), and adapting to,  the  changing environment (e.g., “primitive

contextual elements”; Tang and Bennett, 2010) and other agents

(e.g., Bennett and Tang, 2006; Le  et al.,  2010).  Participatory agent

based modeling has arisen in  this context, which is conceptually

similar to “companion modeling” in  the  ecology literature.

Participatory agentbased modeling incorporates onsite deci

sion making from real  people, facilitating “information sharing,

collective learning and exchange of perceptions on a  given concrete

issue among researchers and other stakeholders” (Ruankaew et al.,

2010). A particular application is role  playing of  real stakehold

ers,  which has been successfully used in  soliciting decision rules

through direct observation of the  player’s behavior. Success of using



L. An /  Ecological Modelling 229 (2012) 25– 36 31

this approach has been reported from several study regions such

as Northeast Thailand (Naivinit et al., 2010), the Colombian Ama

zonian region (Pak and Brieva, 2010), Central France (Etienne et al.,

2003), Senegal (D’Aquino et al., 2003), and Vietnam (Castella et al.,

2005a,b; Castella, 2009;  see D’Aquino et al., 2002 for review).

3.7. Empirical or heuristic rules

Agents are assigned rules that are derived from  empirical data

or observations (e.g., through cluster analysis; Bakker and Doorn,

2009) without a  strong theoretical basis or other guidelines. Models

using rules of this type are sometimes called “heuristic rulebased

models” (Gibon et al., 2010). Even though also based on data,

researchers usually have to go  through relatively complex data

compiling, computation, and/or statistical analysis to obtain such

rules, not as straightforward and selfevident as  that in  Section 3.5.

Some demographic decisions are usually modeled in a stochastic

manner. For instance, male adults may  move to the  Gulf of  Guinea

basin to find jobs during the dry season at a certain probability

(Saqalli et al., 2010); children between 16 and 20 may go to college

or technical schools at a  probability of 2% per year (An et al., 2005);

only male adult agents more than 16 years old may have  access to

the migration activity (Saqalli et al.,  2011). Using a  series of pre

determined socioeconomic variables as  covariates (the choice of

these variables still depends on theory), Zvoleff and An (submitted

for publication) build statistical models (e.g., logistic regression and

survival analysis) to make links  between fertility choices and land

use.

Neural network or decision tree methods, largely black or grey

box approaches (usually few mechanistic explanations or theories

are provided, if any), are sometimes used to derive or  “learn” rules

from empirical data. In modeling strategies of ambulance agents

that aim to save victims, experts were provided with a set of sce

narios that increase in information complexity (e.g., location and

number of hospitals, ambulances, and victims, whether there is

enough gasoline). Then the set of  criteria or decision rules, usually

not elicitable or elicitable only with difficulty, was learned through

analyzing the experts’ answers under the above scenarios using a

machinelearning process (e.g., a decision tree; Chu et al., 2009).

This type of black or greybox approach, though statisticsbased,

is different from many other instances in which statistical analyses

(e.g., regression) are used under theoretical (e.g., microeconomics

or others reviewed above) guidance.

When data on deterministic decision making processes are

unavailable, it is sometimes practical to group agents according

to a certain typology (e.g., one derived from survey data). Such

typologies usually account for differences in  making decisions,

performing some behavior, or encountering certain events (e.g.,

Antona et al., 1998; Etienne et al., 2003; Loibl and Toetzer, 2003;

Mathevet et al.,  2003; Bakker and Doorn, 2009; Wainwright and

Millington, 2010; Valbuena et al., 2010a).  In some instances, each

agent type may  be assigned a  ranking or scoring value for a spe

cific decision or behavior type (out of  many types) according to,

e.g., experts’ knowledge or empirical data (e.g.,  the ‘Who Counts’

matrix in Colfer et al., 1999).

Examples of this type  of decision model are numerous. In  one

example focusing on land use  decisions, five types of farmers

(i.e., hobby, conventional, diversifier, expansionistconventional

and expansionistdiversifier) were identified based on both the

willingness and ability of farmers in  terms of farm expansion and

diversification of farm practices. For each type, empirical proba

bilities were found for optional activities such as “stop farming”

or “buying land” (Valbuena et al., 2010b).  In modeling land use

decisions at a traditional Mediterranean agricultural landscape,

Millington et  al. (2008) adopt a classification of “commercial” and

“traditional” agents. These agents make decisions in different ways:

commercial agents make decisions that seek profitability in  con

sideration of market conditions, landtenure fragmentation, and

transport; while traditional agents are parttime or traditional

farmers that manage their land  because of its  cultural, rather than

economic, value. Similar efforts include the  agent profiling work

by AcostaMichlik and Espaldon (2008) and the empirical typology

by Jepsen et al. (2005), Acevedo et al. (2008),  and Valbuena et al.

(2008).

Deriving rules this way (i.e., exposing empirical data to sta

tistical analysis), modeling needs can  be temporarily satisfied.

However, questions related to why  decisions are so made are

largely left unanswered. For instance, Evans et  al. (2006) point out

that many statistical tools can  be  employed to correlate particular

agent attributes (e.g., age) with specific landuse decisions, which

may  be  “useful for policy purposes. However, this practice does not

necessarily identify why landowners of  a  certain age  make  these

decisions.” Hence it would be ideal that beyond those empirical

or heuristic rules, actual  motivations, incentives, and preferences

behind those decisions can be derived. This will not only provide ad

hoc solutions to the specific problem under investigation, but also

advance our generic knowledge and capacity of modeling human

decisions in  complex systems (CHANS in  particular).

3.8. Evolutionary programming

This type of decision making model, in essence, belongs to  the

category of  empirical or  heuristic decision models (Section 3.7). It

is  separately listed as its computational processes are similar to

those in natural selection theory. Agents carry a  series of num

bers,  characters, or strategies (chromosomes; Holland, 1975) that

characterize them and make them liable to different decisions or

behaviors. The selection process favors individuals with the  fittest

chromosomes, and these individuals usually have the  capacity of

learning and adaptation. Copying, crossbreeding, and mutation

of their chromosomes are critical  during the adaptation or  evo

lution process. Under this umbrella, genetic algorithms (Holland,

1975) have emerged and found applications in a range of ecologi

cal/biological studies (see  Bousquet and Le Page, 2004 for review)

as well as studies on emerging social organizations (Epstein and

Axtell, 1996). In CHANS research, few but  increasing empirical stud

ies fall into this category. Below are examples that  illustrate this  line

of modeling decision making.

In the human–environment integrated land assessment (HELIA)

model that  simulates households’ land  use decisions in  the  south

ern  Yucatán (Manson and Evans,  2007),  household agents use

their  intricate function f(x) to calculate the  suitability when sit

ing  land use in  a “highly dimensional stochastic” environment

(Manson, 2006).  This function f(x) is considered to consist of usu

ally multicriteria (and likely multistep) evaluation processes that

are unknown or inarticulate. Through some symbolic regression

(genetic programming in particular) between land  change data (Y,

response variable) and spatial predictor variables (X = {X1, . . . Xn}),

an empirical function
_

f (x) can  be estimated to approximate f(x)

(e.g., through minimizing the  residuals between  data and estimated

suitability). During the estimation process, multiple parental land

use strategies or programs (similar to the above chromosomes)

compete and evolve to produce offspring strategies through imi

tating/sharing, interbreeding, and mutation (Manson, 2005).

Strategies computed through genetic programming are found

to be consistent with those obtained from  general econometric

models or rules of thumb solicited from local interviews, and

the latter were often believed to be trustworthy (Manson and

Evans, 2007). This consistency increases the  reliability of genetic

programming on the  one hand; at the same  time it necessitates

more explorations for  why  and when genetic programming should

be  used in place of  traditional modeling approaches. A  variant
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under this type of studies is the concept of tag (a  sort of  numerical

code that explains skills or behavior). Agents, through comparing

and adopting each other’s tags, interact with each other and are

collectively (usually unwittingly) accountable for  the emerging

patterns (Riolo et al., 2001).

3.9. Assumption and/or calibrationbased rules

Hypothetical rules can be used in  places where inadequate data

or theory exists. In public health or epidemiology field, daily activity

routines and social networks (especially social contact structure)

are important for  researchers to model the  diffusion of infectious

diseases and to design polices for disease mitigation (Eubank et al.,

2004; Epstein, 2009). Human agents are infected in  a stochastic

manner that involves untested assumptions (e.g., Muller et al.,

2004; Perez and Dragicevic, 2009), and the timing, location, and

probability of getting infected are closely related to the number of

contacts they make with other agents over a  certain time inter

val (Stroud et al., 2007; Yang and Atkinson, 2008). Specifically in

Perez and Dragicevic (2009)’s  model, it is  assumed that the length

of time for outofhouse daily activities for an individual is 10 h

(time of high risk of being infected), which includes 2 h for pub

lic transportation and 8 h in work places, study places, or places

for doing some leisure activities. People within this 10h window

are assumed to have the same risk of infection, which may  be sub

ject to changes if  new observations or theories arise. Temporarily,

such untested hypothetical rules are accepted to operationalize the

corresponding model.

Similarly, timedependent human activities, varying across dif

ferent land use or agent types (e.g., rice growers, hunters) or  time

windows, are documented and assumed constant over time. Such

data, including the constancy assumption, are used to simulate how

likely, e.g., humans may  be infected by Malaria over space and time

assuming constant mosquito (An. hyrcanus) biting rate (Linard et  al.,

2009), or how likely hunters may  capture game animals (Bousquet

et al., 2001). In another instance, “[At] an age specified by the user

(the user has to make these assumptions related to decision rules),

children leave the house in search of an independent livelihood or

other economic opportunities” (Deadman et al., 2004). There are

many other simulation studies that similarly document the tim

ing and location of different human activities, and assume a certain

activity, location, or time may  subject the  associated agents to cer

tain events (e.g., Roche et  al., 2008; Liu et al., 2010)  or  strategies

(e.g., Roberts et al., 2002) at the same probability.

Alternatively, calibrationbased rules are used to  choose among

candidate decision models. Specifically, such candidates are applied

to the associated ABM, which may  produce various outcomes. By

evaluating the defensibility of the outcome or comparing the out

come with observed data (if available), the modeler decides what

decision model is most likely to be useful. For instance, in  Fontaine

and Rounsevell (2009)’s model that  simulates residential land use

decisions, several values, usually ranging from low to high, are

chosen for a set of carefully selected parameters (e.g., weight for

distance to coastline or road network). Then all the combinations

of these parameter values are entered into  the model for simula

tion runs. Then the set of parameter values that give rise to resultant

household patterns most similar (e.g., in terms of correlation coef

ficient) to real data at a  certain aggregate level are retained. In  some

instances decision or behavior patterns of  economic agents per se

are of interest, and this approach is used to detect the most plausible

one(s) (e.g., Tillman et al., 1999).

There are several disadvantages associated with this  type

of assumption and/or calibrationbased decision models: (1)

researchers usually do not have all the possible candidate rules,

thus the chosen one may  not be appropriate; (2) only  a limited

number of rules should be set by  calibration testing; errors in ABMs

could cancel out  each other and give rise  to problematic calibration

outcomes (e.g., ruling out a  good candidate). Therefore, rules of this

type should be used with caution. Calibration in ABM is  often cited

as  a weakness of ABM that needs to be improved (e.g., Parker et al.,

2003; Phan and Amblard, 2007).

4. Conclusion

This  paper does not mean to give a complete list of all  human

decision models used in CHANS research. It rather focuses on  the

ones that are relatively frequently used in  the hope that CHANS

modelers (especially beginners) may  find  them helpful when grap

pling with how to model human decisions. It  is  also noteworthy

to point out that the above nine types of  models are by no means

exclusive – in many instances, hybrid models are employed in  sim

ulating CHANS decision making processes.

The CHANS related complexity (as  reviewed in  Section 1)

makes modeling of human decision highly challenging. Accord

ing to this  review, human decision or behavior models in  related

ABMs range from highly empirically based ones (e.g., derived

through trend extrapolation, regression analysis, expert knowledge

based systems, etc.) to more mechanistic or processesbased ones

(e.g., econometric models, psychosocial models). It  is clear that

both approaches for modeling human decisions along this gradi

ent (from empirically based to processesbased) have their own

strengths and weaknesses, and should be employed to best suit

the corresponding contexts (e.g., objectives, budget and time lim

itations) and complement each other. On the other hand, humans

make decisions in  response to changing natural environments,

which will in turn change the context for future decisions. Humans,

with abilities and aspirations for learning, adapting, and mak

ing changes, may undergo evolution in  their decisionmaking

paradigm. Given all these features, it is considered “something that

is still far away”  to incorporate realistic reasoning about beliefs

and preferences into understanding and modeling human decision

processes (Ligtenberg et al., 2004).  Without a more processbased

understanding of  human decisionmaking (e.g., the wayfinding

process model by  Raubal, 2001), it is  very difficult to appreciate

complexity at multiple dimensions or scales, achieving indepth

coupling of the natural and human systems.

This  research thus advocates that  while keeping up with empir

ically based decision models, substantial efforts be invested in

processbased decisionmaking mechanisms or models to bet

ter  understand CHANS systems. In  many instances, processbased

models are the  ones “capturing the  triggers, options, and tem

poral and spatial aspects of  an actor’s reaction in a  [relatively]

direct, transparent, and realistic way” (Barthel et  al., 2008). Dur

ing this pursuit, agentbased modeling will play an essential role,

and will become enriched by  itself. On the other hand, CHANS mod

elers should avoid an extreme situation in which decision models

are made unnecessarily complex through, e.g., including a large

amount of  trivial details. Whatever decision models are  used, the

KISS rule  (“keep it simple, stupid”; Axelrod, 1997,  pp. 4–5) may  still

be a  good advice given the complexity we face in  many CHANS. By

keeping the  behaviors available to agents limited and algorithmic,

we as  modelers will be able to  produce stories that, if not convinc

ingly  true, cannot be automatically “categorized as false because

they contradict what we  know  of human capacities” (Lustick, 2000).

Modeling human decisions and their environmental conse

quences in  ABM is still a  combination of  science and art. One

difficulty encountered in this review is  to compare and contrast dif

ferent agentbased models, which may  partially arise from the  high

variability in  ways to develop and present agentbased models.

Consequently, crossfertilization between ABM models developed

by different researchers is a daunting task. Similar to the  ODD
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(Overview, Design concepts, and Details) protocol for ecological

studies (Grimm et al., 2006) and the agentbased simulation taxon

omy for environmental management (Hare and Deadman, 2004),

it would be desirable to  have  similar protocols for CHANSoriented

ABMs that aim at modeling human decisions. This paper thus advo

cates that generic protocols and/or architectures be developed in

the context of the specific domain of research questions. Advance

ments in computational organization theory, behavioral decision

theory, marketing and diffusion research, and institutional the

ory, may  provide useful insights for establishing such protocols

or architectures (Watts and Dodds, 2007;  Kulik and Baker, 2008).

Such protocols or architectures, though not  panaceas, may be used

as benchmarks or checklists, offering recommendations on model

structure, choice of decision models, and key elements in  modeling

human decisions.

As in the past, CHANS modelers will  continue to benefit from

other disciplines such as  ecological psychology (directly address

ing how people visually perceive their environment; Gibson, 1979),

biology/ecology (e.g., genetic programming), sociology (e.g., orga

nization of agents), political science (e.g., modeling of artificial

societies), and  complexity theory (e.g., complexity concept). It is

hoped that research on how to model human decisions in CHANS

will not only advance theories, but also bring forward new opportu

nities in advancing complexity theory and agentbased modeling.
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