
1 
 

Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models  1 

 2 

Li An1,* 3 

 4 

RH:  Review of modeling human decision in CHANS 5 

 6 

12,010 words 7 

 8 

1Department of Geography, San Diego State University, 5500 Campanile Dr., San Diego, California 9 

92182-4493, USA. 10 

 11 

*To whom correspondence may be addressed: 12 

Email: lan@mail.sdsu.edu 13 

 14 

 15 

 16 

 17 

 18 

mailto:lan@mail.sdsu.edu


2 
 

Abstract   19 

Coupled human and natural systems (CHANS) manifest various complexities such as heterogeneity, 20 

nonlinearity, feedback, and emergence. Humans play a critical role in affecting such systems and in 21 

giving rise to various environmental consequences, which may in turn affect future human decisions and 22 

behaviors. In light of complexity theory and its application in CHANS, this paper reviews various decision 23 

models used in agent based simulations of CHANS dynamics, discussing their strengths and weaknesses. 24 

This paper concludes by advocating development of more process-based decision models as well as 25 

protocols or architectures that facilitate better modeling of human decisions in various CHANS. 26 

Keywords:  Agent-based modeling; human decision making; coupled human and natural systems; review. 27 
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1. Introduction 38 

Human-nature systems used to be studied in separation, either as human systems constrained by or 39 

with input from/output to the natural environment, or as natural environment systems subject to 40 

human disturbance. This chasm between ecological and social sciences, along with such unidirectional 41 

connections between natural and human systems, has hindered better understanding of complexity 42 

(e.g., feedback, nonlinearity and thresholds, heterogeneity, time lags) in coupled human and natural 43 

systems (CHANS; Liu et al., 2007). This context has given rise to many empirical research efforts in 44 

studying CHANS, emphasizing the aforementioned complexity features. 45 

Synthetic analysis of such research efforts has revealed the multi-scalar and cross-disciplinary nature 46 

of much empirical CHANS related research (e.g., Bian, 1997; Phillips, 1999; Walsh et al., 1999; Manson, 47 

2008) as well as many similar complex phenomena shared by many CHANS systems. For instance, the 48 

above complexity features were documented at six sites in the world (Liu et al., 2007). Corroborating 49 

evidence for these features also comes from empirical work in the Amazon (Malanson et al., 2006a, 50 

2006b), the southern Yucatán (Manson 2005), Wolong Nature Reserve of China ( An et al., 2005, 2006), 51 

Northern Ecuador (Walsh et al., 2008), and other places around the world.  Indeed, such complexity has 52 

been the subject of an emerging discipline: complexity theory. 53 

1.1 Complexity Theory  54 

Partially originating from general systems theory (von Bertalanffy, 1968; Warren et al., 1998), 55 

complexity theory has been developed with input from fields such as physics, genetic biology, and 56 

computer science. Recently receiving considerable attention (Malanson, 1999; O’Sullivan, 2004), this 57 

line of research focuses on understanding complex systems (or “complex adaptive systems”). Such 58 

systems are presented as intermediate systems between small-number systems (where mathematical 59 

approaches such as differential equations are often adequate) and large-number systems (usually 60 
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represented or described by statistical models such as regressions; Bousquet and Le Page, 2004). 61 

Complex systems usually encompass heterogeneous subsystems or autonomous entities, which often 62 

feature nonlinear relationships and multiple interactions (e.g., feedback, learning, adaptation) among 63 

them (Arthur, 1999; Axelrod and Cohen, 1999; Manson, 2001; Crawford et al., 2005).  64 

Complexity can be manifested in many forms, including path-dependence, criticality, self-65 

organization, emergence of qualities not analytically tractable from system components and their 66 

attributes alone, and difficulty of prediction (Solé and Goodwin, 2000; Manson, 2001; Bankes, 2002). 67 

Hence researchers have suggested placing more emphasis on understanding and improving the system 68 

of interest rather than fully controlling the system or seeking the “orderly and predictable relationship 69 

between cause and effect” (Solé and Goodwin, 2000). It is suggested that rather than being treated as a 70 

cure-all solution, the complex systems approach be employed as a systematic paradigm to harness (but 71 

not ignore or eliminate) complexity and take innovative action to steer the system in beneficial 72 

directions. 73 

Even with the above theoretical advancements and technical development (ABM in particular; see 74 

below), complexity theory is still considered to be in its infancy, lacking a clear conceptual framework 75 

and unique techniques, as well as ontological and “epistemological corollaries of complexity” (Manson, 76 

2001; Parker et al., 2003; Grimm et al., 2005; Manson and O’Sullivan, 2006).  77 

1.2 Agent-based modeling 78 

Like cellular automata (Batty et al., 1994, 1997; Clarke and Gaydos, 1998; Malanson et al., 2006a, 79 

2006b), agent-based modeling (ABM) has become a major bottom-up tool that has been extensively 80 

employed to understand the above complexity in many theoretical (e.g., Epstein and Axtell 1996; 81 

Axelrod, 1999; Axtell et al., 2002) and empirical (see Section 1.3) studies. What is an agent-based model?  82 

In the terms of Farmer and Foley (2009), “An agent-based model is a computerized simulation of a 83 
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number of decision-makers (agents) and institutions, which interact through prescribed rules.” The ABM 84 

method has a fundamental philosophy of methodological individualism, which advocates a focus on 85 

uniqueness of individuals and interactions among them, and warns that aggregation of individuals may 86 

give rise to misleading results (Gimblett, 2002; Bousquet and Le Page, 2004).  87 

Agent-based modeling has an intellectual origin from a computer science paradigm called object-88 

oriented programming, which has become popular since the 1980s with the advent of fast computers 89 

and rapid advancement in computer science. This paradigm “groups operations and data (or behavior 90 

and state) into modular units called objects” (An et al., 2005), and lets the user organize objects into a 91 

structured network (Larkin and Wilson, 1999). Each object carries its own attributes (data) and actions 92 

(methods) with a separation between interface and implementation (technical details). This separation 93 

hides technical details (parts of a clock) inside the system surface (interface of the clock; Figure 1). The 94 

“implementation” feature makes the system work, while the user-friendly interface running above the 95 

system details “provides simple data input, output, and display functions so that other objects (or users) 96 

can call or use them” (An et al., 2005). 97 

[Figure 1 approximately here] 98 

The ABM approach has also benefited abundantly from many other disciplines, which are still 99 

fertilizing it. Among these disciplines, research on artificial intelligence (AI) is noteworthy, in which 100 

multiple heterogeneous agents are coordinated to solve planning problems (Bousquet and Le Page, 101 

2004). Also contributing to ABM development is artificial life research, which explores “life as it might be 102 

rather than life as it is” (Langton, 1988). Many social sciences are also nourishing ABM. For instance, 103 

rationalized strategies of agents are developed in cognitive psychology and game theory; sociology is 104 

credited with defining modes of and modeling interactions between agents and the environment 105 

interactions (Bousquet and Le Page, 2004). In studying social behavior and interactions, ABM usually 106 
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starts with a set of assumptions derived from the real world (deduction), and produces simulation-based 107 

data that can be analyzed (induction). Hence Axelrod (1997) considers ABM as a “third way” in scientific 108 

research, which complements the traditional inductive and deductive approaches.  109 

ABM has been used to predict the phenomena of interest (although some scholars may doubt its 110 

usefulness in complex systems; e.g., Couclelis 2001), to understand the system under investigation, and 111 

to answer many “what if…” questions using the ABM as a “virtual landscape lab for conducting 112 

numerical experiments” (Seppelt et al. 2009). ABM also facilitates theorizing based on observations, e.g., 113 

comparing ABM outcomes to mathematical models. Despite these strengths, ABMs face limitations such 114 

as lack of predictive power at low levels, difficulty in validation and verification (Lempert, 2002; Parker 115 

et al., 2003; Matthews et al., 2007), and shortage of effective architectures and protocols (e.g., graphic 116 

languages, scale and hierarchy definitions) to represent agents and their interactions need (Bousquet 117 

and Le Page, 2004). Particularly, learning processes (part of or precursor of decision making) of many 118 

decision makers in the real world are poorly represented in many ABMs (Bousquet and Le Page, 2004).  119 

1.3 Complexity Research in CHANS 120 

The application of complexity theory and its major tool ABM in CHANS is still relatively recent, which 121 

can be largely summarized in three threads. The first is the thread of individual-based modeling (IBM) in 122 

ecology. This line of research started in the 1970s and advanced in the 1980s, characterized by relatively 123 

“pure” ecological studies (thus not CHANS studies in a strict sense) that have contributed to later CHANS 124 

related ABM development.  Exemplar work includes the bee colony work (Hogeweg and Hesper, 1983), 125 

research on animats (agents that are located in space and may move or reproduce; Wilson 1987; Ginot 126 

et al., 2002), research on “Boids” by Reynolds (1987), and sparrow research by Pulliam  et al. (1992). 127 

Even though IBM and ABM are considered largely equivalent, some features differentiate one from the 128 

other. While IBM focuses more on role of heterogeneity and uniqueness of individuals, ABM, with 129 
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substantial contribution from computer science and social sciences, gives more attention to decision-130 

making process of agents and their contextual social organizations (Bousquet and Le Page, 2004).  131 

The second thread of ABM use in CHANS is characterized by conceptual or theoretical tests in social 132 

science fields (e.g., “thought experiments”). Work under this domain has become popular since the 133 

1970s, including the segregation models of Sakoda (1971) and Schelling (1971), the prisoners’ dilemma 134 

for testing cooperative strategies (Axelrod and Dion 1988), and emergence from social simulations (e.g., 135 

the SugarScape model; Epstein and Axelrod, 1996). Such efforts, usually made in virtual environments, 136 

feature ad hoc rules that are used to test ‘what if’ scenarios or explore emergent patterns. Efforts were 137 

also invested to answer archaeological questions using ABM, such as how/why certain prehistoric/ 138 

ancient people abandoned their settlements or adapted to changing environment (e.g., Axtell et al., 139 

2002; Kohler et al., 2002; Altaweel, 2008; Morrison and Addison, 2008). Such efforts, closely related to 140 

explorations in game theory and complex adaptive systems (CAS), are precursors of modeling empirical 141 

CHANS below. 142 

The third and last thread features applying ABM to realistic CHANS based on empirical data, which is 143 

usually coupled with cellular models (e.g., cellular automata) to spatially represent the environment. In 144 

tandem with the above theoretical advancements, empirical support, especially data about human 145 

systems, is considered essential in advancing our understanding of complex systems (Parker et al., 2003; 146 

Veldkamp and Verburg, 2004). Recent years has witnessed considerable work devoted to the 147 

advancement of complexity theory and application of ABM in CHANS (e.g., Benenson, 1999; Grimm, 148 

1999; Irwin and Geoghegan, 2001; Gimblett, 2002; Henrickson and McKelvey, 2002; Deadman et al., 149 

2004; Evans and Kelly, 2004; An et al., 2006; Crawford et al., 2005; Fernandez et al., 2005; Goodchild, 150 

2005; Grimm et al., 2005; Messina and Walsh, 2005; Sengupta et al., 2005; Portugali, 2006; Uprichard 151 

and Byrne, 2006; Wilson, 2006; Ligmann-Zielinska and Jankowski, 2007; Brown et al., 2008; Yu et al. 152 
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2009), including urban systems (Batty 2005).  This is further evidenced by multiple complexity theory 153 

sessions at the annual conferences of the Association of American Geographers (AAG) in recent years, 154 

the NSF-sponsored International Network of Research on Coupled Human and Natural Systems (CHANS-155 

Net), and six CHANS related symposia held at the 2011 AAAS annual meeting in Washington, D.C.  156 

Several major advantages credited to ABM have made it powerful in modeling CHANS systems. First, 157 

ABM has a unique power to model individual decision making while incorporating heterogeneity and 158 

interaction/feedback (Gimblett, 2002). A range of behavior theories or models, e.g., econometric 159 

models and bounded rationality theory (to be reviewed later), can be used to model human decisions 160 

and subsequent actions. Second, ABM is able to incorporate social/ecological processes, structure, 161 

norms, and institutional factors (e.g., Hare and Deadman 2004). Agents can be created to carry or 162 

implement these features, making it possible to “put [putting] people into place (local social and spatial 163 

context)” (Entwisle 2007). This complements the current GIS functionality, which focuses on 164 

representing form (i.e., “how the world looks”) rather than process (i.e., “how it works”; Goodchild, 165 

2004). This advantage makes it technically smooth to couple human and natural systems in an ABM.   166 

CHANS, largely similar to social-ecological systems (SESs) by Ostrom (2007), may have many human 167 

and nonhuman processes operating at multiple tiers that are hierarchically nested (Ostrom, 2009). 168 

“Without a common framework to organize findings, isolated knowledge does not cumulate” (Ostrom, 169 

2009), preventing effective addressing of the above complexity. ABM is credited with having the 170 

flexibility to incorporate multi-scale and multi-disciplinary knowledge, “co-ordinate a range of 171 

qualitative and quantitative approaches” (Bithell et al. 2008), and mobilize the simulated world (An et al., 172 

2005; Matthews et al., 2007). Consequently, agent-based modeling is believed to have the potential to 173 

facilitate methodologically defensible comparisons across case study sites. For example, ABM was used 174 

to synthesize several key studies of frontier land use change around the world (Rindfuss et al., 2007).  175 
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1.4 Modeling Human Decision Making in CHANS 176 

In the process of truly coupling the human systems and natural systems within any CHANS, the 177 

importance of understanding how human decisions are made and then put into practice can never be 178 

exaggerated (Gimblett 2002). Human decisions and subsequent actions would change (at least affect) 179 

the structure and function of many natural systems. Such structural and functional changes would in 180 

turn exert influence on human decisions and actions. Nonetheless, seeking fundamental insights into 181 

human decision or behavior, though of paramount value, is beyond the scope of this paper (even 182 

beyond the scope of one discipline). The goal of this paper is to review what and how existing 183 

understanding of human decision-making and behavior has been used to model human decisions in 184 

CHANS. It is hoped that this review will benefit CHANS researchers by shedding light upon the following 185 

perspectives (objectives of this paper): 186 

a. What methods, in what manner, have been used to model human decision-making and behavior? 187 

b. What are the potential strengths and caveats of these methods? 188 

c. What improvements can be made to better model human decisions in CHANS? 189 

Given the previously mentioned characteristics of complex systems, especially those in CHANS, as 190 

well as the power of ABM in modeling and understanding human decisions, this paper limits the review 191 

to how human decisions are modeled in recent CHANS related ABM work. 192 

2. Methods 193 

To achieve the above goal and the specific objectives, a collection of articles was assembled through 194 

two approaches. The first approach is a search on Web of Science using the following combination of 195 

key words: Topic=((Agent based modeling) or (multi-agent modeling) or (agent based simulation) or 196 
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(multi-agent simulation)) AND Topic=((land use) or (land cover) or geography or habitat or geographical 197 

or ecology or ecological) AND Topic=((human decision making) or (environment or environmental)).  198 

The first topic defines the tool of interest: only work using agent-based modeling for the reason 199 

discussed above. Given that different authors use slightly different phrasing, this paper incorporated the 200 

most-commonly used alternative terms such as multi-agent simulation. The term “individual based 201 

modeling” was not used as one of the key words because as a term predominantly used by ecologists, it 202 

involves work largely in the “purely” ecological domain and rarely contains research directly related to 203 

human decisions in CHANS. The second topic restricts the search to be within areas of land use and land 204 

cover change, geography, and ecology1. This decision is based on our interest in work in these areas that 205 

characterize research related to CHANS systems.   206 

The third topic reflects the major interest of this paper, which relates to human decisions that give 207 

rise to environmental consequences. We also include papers on all human-related agents, e.g., 208 

individual persons, households, or groups. This paper did not use “AND” to connect the two parts 209 

because this is too restrictive and many relevant papers (including several renowned ones of which the 210 

author is aware) are filtered out.  211 

The second approach is complementary to the first, which assembles articles through the author’s 212 

personal archive that has been established since 2002. This archive also includes relevant books or book 213 

chapters that are not in the database on Web of Science, but the author knows (in regard to using   ABM 214 

in CHANS). These papers, books, or book chapters assembled in the past nine years are also used to 215 

evaluate the completeness of the above online search.  216 

                                                           
1 Keywords like “anthropology” or “archaeology” are not used simply because doing so increases the number of 
papers found and most of them are not relevant to the topic of this paper. Without using such keywords some 
papers have still been found that are related to using ABM to study anthropologic phenomena such prehistoric 
settlement (see Section 1.3). 
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 217 

3. Results 218 

According to the above online search, 155 articles2 were found to be published on the topics of 219 

interest from 1994 to 2010. Out of these 155 articles, 69 were beyond our planned scope (e.g., in pure 220 

ecology or cell biology), i.e., they do not fit the above criteria (expressed by the above keywords). From 221 

the second approach, a total of 28 publications (i.e., papers, book chapters, or books) were found. 222 

Therefore a total number of 114 publications were included in this review, which comprises the 223 

reference list. 224 

Under these search criteria, it appears that ecologists and geographers take the lion’s share in 225 

CHANS related ABM work. The top six journals were Ecological Modelling (11), Environmental Modelling 226 

& Software (11), Environment and Planning B (6), Geoforum (6), Agriculture, Ecosystems & Environment 227 

(5), and Journal of Environmental Management (5). The publications in this domain have increased 228 

linearly from 1994 to 2010 (Figure 2). This article did not include the counts in 2011 (2 till the submission 229 

of this paper in February) because many are still incoming and thus unable to be included.  230 

[Figure 2 approximately here] 231 

Before getting to the major findings, it is important to introduce how data related to human 232 

decisions are collected as well as how agents are characterized. Data collection for agent-based models, 233 

especially for modeling real CHANS, is usually very time-consuming and sometimes considered as a 234 

drawback of this approach (Gimblett 2002). Various means, such as direct observations (e.g., Miller et al. 235 

2010), surveys or interviews (e.g., Saqalli et al. 2010), government archives (e.g., An et al. 2005), remote 236 

sensing and GIS (e.g., Brown et al. 2007), and/or statistical census or surveys were used to acquire data 237 

                                                           
2 If “individual based modeling” is added as part of the search key words, 308 papers are found and vast majority 
of these added 153 papers have nothing to do with human decision making and are thus considered irrelevant. 
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that facilitate modeling human decisions. When data are readily collected, agents in related CHANS 238 

models were usually assigned with real data collected at the same level (e.g., An et al., 2005) or data 239 

sampled from aggregate (statistical) distributions or histograms (usually available from a higher level 240 

such as population; Miller et al. 2010). In modeling land use decisions, data are often only available at 241 

the latter (aggregate) level (Parker et al. 2008). 242 

Overuse of aggregate distributional or histogram data may risk losing the strength of ABM because 243 

such data may lead to average “agents”. Heterogeneity of agents plays a critical role in deciding how 244 

agents interact, feedback, react, and adapt (Matthews et al., 2007). Also such overuse may lead to 245 

hidden or implicit conflicts between those characteristics assigned to agents, e.g., a newly established 246 

household assigned to be located at a high elevation (near the maximum in the survey data) may be also 247 

“given” a large amount of cropland, which is not very likely to happen in the panda reserve of An et al.’s 248 

(2005) model. To some degree, attention to correlation among variables can avoid this problem (Zvoleff 249 

in preparation). 250 

Below a total of nine types of decision models (each type as one subsection) are summarized and 251 

presented based on my review of the set of articles in relation to modeling human decision in CHANS. A 252 

certain paper may use multiple decision models, and this review does not intend to identify and 253 

recognize all of them. Instead, this article aims to extract generic decision models that are typically used 254 

in CHANS related ABMs. Also worthy of mention is that decision models and decision rules are used 255 

interchangeably. Although actions, behaviors, and decisions are not exactly equivalent (e.g., an action 256 

may come out as a result of a decision), these terms are used also interchangeably in the context of the 257 

above goal and objectives (Section 1.4). 258 

3.1 Microeconomic models  259 
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Here the microeconomic models (or rules) refer to the ones that are usually used for resource 260 

related decisions. Agents make decisions to maximize certain profit, revenue, or rate of profit (e.g., 261 

Plummer et al., 1999) associated with various optional activities such as transactions, renting, and 262 

inheritance of a certain product or resources (e.g., Parker and Meretsky, 2004; Purnomo et al. 2005; 263 

Evans et al., 2006; Fowler, 2007; Acevedo et al. 2008; Evans and Kelley, 2008; Li and Liu, 2008; Milington 264 

et al., 2008; Filatova et al. 2009; Gibon et al., 2010; Miller et al., 2010). In many instances, certain more 265 

abstract utility (e.g., Cobb–Douglas utility function; see Chiang, 1984), consumption, or aspiration (e.g., 266 

Simon 1955; Gotts et al., 2003) functions are used in place of monetary income. These functions often 267 

take an additive or exponential form of  a weighted linear combination of  many criteria under 268 

consideration (e.g., Jager et al., 2000; Brown et al., 2004, 2006; Bennett and Tang, 2006; Liu et al., 2006; 269 

Zellner et al., 2008; Chu et al., 2009; Le et al. 2008, 2010). With such utility definition, it is possible to 270 

calculate the probability of an agent’s choosing one option (e.g., one site or one opportunity) as the 271 

probability that the utility of that option is more than or equal to that of any other option based on the 272 

McFadden’s theorem (McFadden 1972). 273 

Whatever is in use, the agents are assumed to make rational choices. It is believed that in real world, 274 

such choices or decisions are usually affected, constrained, or bounded by imperfect resources 275 

(including knowledge and information) or limited ability to make use of such resources (Bell et al., 1988; 276 

Simon, 1997). This line of bounded rationality can also be seen from the literature of behavioral decision 277 

theory, which posits that agents should be limited in their environmental knowledge, and their decisions 278 

should be made relatively simply. Furthermore, agents tend to seek satisfactory rather than optimal 279 

utility when making relevant decisions (Kulik and Baker, 2008). 280 

Numerous empirical studies fall into this category of microeconomic models. Examples include the 281 

land use agents who choose sites for various land use purposes (Brown and Robinson, 2006; Brown et al., 282 
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2008; Revees and Zellner, 2010), the farmers who choose sites and routes to collect fuelwood (An et al., 283 

2005), and land buyers in a coastal township who search for the location that maximizes their utility 284 

function constrained by their budget (Filatova et al., 2011). Variants include calculation of a preference 285 

function for a particular land use at a location (Ligtenberg et al., 2010; Chu et al., 2009). All these 286 

examples are characterized by one common feature: computing a certain utility (could also be named 287 

Potential Attractiveness; Fontaine and Rounsevell 2009) value for available options and then choosing 288 

the one with the best (maximum or minimum) value.  289 

3.2 Space theory based models  290 

Geographic theories treat distance differently. Absolute distance between locations is often 291 

considered when individuals make decisions, giving rise to theories of absolute space. Christaller’s 292 

central place theory (Christaller 1933) and von Thünen’s circles of production (von Thünen 1826) belong 293 

to this set of theories. When household agents evaluate candidate sites for their residential location in 294 

the HI-LIFE model (Household Interactions through LIFE cycle stages; Fontaine and Rounsevell 2009), the 295 

Euclidean distances to the closest physical and social features (e.g., the main road network, train 296 

stations, key service areas, large cities) are incorporated in calculating each site’s Potential 297 

Attractiveness (PA). Distances to the-like physical and social features (e.g., peace and order situation) 298 

are also considered in the agent-based models of Loibl and Toetzer (2003), Brown et al. (2004), Huigen 299 

et al. (2006), and Li and Liu (2008). 300 

The characteristics of a certain location in space (e.g., slope) as well as its location relative to other 301 

locations also affect the “attractiveness” (Loibl and Toetzer, 2003) of a certain site, thus affecting 302 

individual agents’ choice of location for a certain purpose. This accounts for the theories of relative 303 

space. For instance, the environmental amenities (e.g., closeness or availability of coastlines, water 304 
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bodies, and green areas such as national parks) belong to the relative space consideration (Brown et al., 305 

2004; 2008; Yin and Muller, 2007; Fontaine and Rounsevell 2009).  306 

Under these two lines of theory, an agent “calculates” the suitability of a given location for a certain 307 

purpose as a function of variables that represent both absolute and relative locations (Manson 2006). 308 

There is certain degree of arbitrariness in choosing the (usually linear) relationships between the 309 

decision(s) and the related distance variables.  Also more justification is needed for the arbitrary (usually 310 

equal) weights of different distance variables (e.g., Loibl and Toetzer, 2003).  311 

3.3 Cognitive models  312 

Agents make decisions based on their own cognitive maps (e.g., concepts) or abilities (e.g., memory, 313 

learning, and innovation), beliefs or intentions, aspirations, reputation of other agents, and social norms 314 

(e.g., Simon, 1955, 1960; Ligtenberg et al., 2004; Fox et al., 2002). There are a few models along this line 315 

that are worth mentioning as they aim to “[represent] the net effect of people’s thought processes” 316 

(Bithell et al., 2008). 317 

First, the actor-centered structuration theory states that actors influence, and simultaneously are 318 

influenced by, social structures, which reflects the concept of duality of structure (Giddens, 1984). 319 

Structuration theory conceptualizes a recursive social reproduction, which is in line with what is termed 320 

as circular causality in many complex adaptive systems such as CHANS (Janssen and Ostrom, 2006; Feola 321 

and Binder, 2010).  Another related theory is the theory of interpersonal behavior, which posits that 322 

intentions, habit, physiological arousal, and contextual factors exert impacts on agent decisions (Triandis, 323 

1980). In one example inspired by these two theories, an Integrative Agent-Centered Framework was 324 

developed to predict potato producers’ pesticide use in Boyacá, the Colombian Andes. Binomial and 325 

multinomial logistic regressions were carried out to derive probability of using certain pesticides based 326 
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on survey data that represent contextual (e.g., socio-economic and political) factors, habit of performing 327 

the act of interest, behavioral intention, and physiological arousal variables (Feola and Binder, 2010).  328 

Second, fuzzy cognitive maps (FCM) are potentially very useful in modeling human decisions and 329 

behavior in CHANS.  The FCMs, derived from cognitive maps that were originally introduced by 330 

psychologists to model complex human or animal behaviors (Tolman, 1948), are graphs that contain a 331 

set of nodes (concepts) and a set of directional edges (each edge representing the influence of a concept 332 

on another). FCMs are more used to describe and compute agent behavior in biological or ecological 333 

studies (e.g., predator-prey simulation, Gras et al. 2009). FCM related empirical research devoted to 334 

simulating human-environment interaction in CHANS has been minimal.  335 

Third and last, computational organization theory is also potentially useful in modeling human 336 

decisions in CHANS. With input from social psychology, this theory claims that individual agents learn 337 

about their environments along pre-conceived biases, and influence other peer agents to adopt the 338 

same biases (Weick, 1979). Chen et al. (2011; this issue) report that a 10% reduction in neighboring 339 

households who participate in a conservation program, regardless of reasons, would decrease the 340 

likelihood that the household would participate in the same program by an average of 3.5 %. At the 341 

Caparo Forest Reserve in Venezuela, land occupation decisions are strongly influenced by imitation and 342 

social learning among individual landowners as a way to secure a "better way of life" (Teran et al. 2007). 343 

Along this line, more research should be devoted to the role of social networks in affecting human 344 

decisions. The quality of social network (e.g., some members in the network have higher influences on 345 

other members) may determine how actions may arise from interactions (e.g., Barreteau and Bousquet, 346 

2000; Acosta-Michlik and Espaldon 2008). Also in understanding recreational decisions, cognitive 347 

assessment models (e.g., Kaplan’s Information Processing Model; Kaplan and Kaplan 1982) are useful. 348 
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They provide fundamental understanding of how humans evaluate landscape quality and make 349 

subsequent decisions (Deadman and and Gimblett 1994). 350 

3.4 Institution-based models 351 

To a large extent, such models are inextricably linked to the above cognitive models because 352 

institutions can be considered as a special type of social norm that is established through law or policy. 353 

Institutions can explain why there are similarities across agents. Institutional theory postulates that 354 

agents in the same environment copy each other either because they are forced to (government 355 

regulation) or to gain legitimacy from copying other same-environment members’ strategies (DiMaggio 356 

and Powell, 1983).  For example, a person agent may consider marriage at a certain probability at the 357 

age of 22, the minimum age for marriage legally mandated in China (An et al., 2005). In another CHANS, 358 

the household agents could not perform their production activities outside their own ejidos (land 359 

management and ownership units) or sell land to outsiders before the neoliberal policy shift in the 360 

southern Yucatán (Manson, 2006).   361 

Institutions may take a number of forms. In modeling location and migration decisions of firms 362 

(agents), subsidies, tax reductions, and/or environmental standards (enforced by governments) play a 363 

critical role in impacting the mobility of small and medium size firms (Maoh and Kanaroglou 2007). The 364 

pastoralist enterprises in Australian rangelands, through conforming to policies from governments 365 

and/or land brokers, may adopt different strategies (e.g., selling, destocking, or restocking cattle; Gross 366 

et al. 2006). In the simulation model of whale-watching tours in the St. Lawrence Estuary in Quebec, 367 

Canada, boat agents are required by regulation to share whale location information among other agents 368 

(Anwar et al. 2007). Buyer and seller agents make land transactions, subject to local policy and 369 

regulations (e.g., minimum parcel size), in the process of seeking maximum economic returns (Lei et al. 370 

2005). 371 
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3.5 Experience- or preference-based decision models (rules of thumb) 372 

Experience- or preference-based decision models are usually effective real-world strategies that can 373 

be articulated or inductively derived from data (both quantitative and qualitative), direct observations, 374 

ethnographic histories (e.g., “translating” narratives or life histories from the field into a computerized 375 

model; Huigen, 2004; Huigen et al., 2006; Matthews, 2006), or “stylized facts abstracted from real-world 376 

studies” (Albino et al. 2006). They are often simple, straightforward, and self-evident without much 377 

need for additional justification.   378 

Examples using this type of decision model are many. When a new house (agent) is set up, the 379 

vegetation in its location and surrounding area is cleared up (An and Liu 2010). When clearing forests, 380 

the households in the southern Yucatán will “clear secondary forest when the primary forest is too far 381 

from my location” (Manson and Evans 2007). Human agents living with the hunter-gatherer lifestyle 382 

“first search for animals in their present location (cell) to hunt, and if successful, consume the animal. 383 

Otherwise… [they]move to adjacent cells to hunt.” (Wainwright, 2008). In deciding what to plant or 384 

simply fallow, household agents check their subsistence needs, soil quality, capital, and labor in a 385 

hierarchically connected manner (Deadman et al. 2004). In the Caparo tropical forest reserve in 386 

Venezuela, a settler agent performs subsistence-oriented activities such as “slash and burn” after he/she 387 

takes possession of a parcel of land in the reserve (Moreno et al. 2007). 388 

Along this line, artificial intelligence algorithms (e.g., learning classifier; Holland and Holyoak, 1989), 389 

often combined with expert knowledge and some degree of fuzzy logic, have been developed to solicit  390 

agents’ decision rules in a manner consistent with our understanding of reality (e.g., Roberts et al., 2002; 391 

An et al., 2005; Wilson et al., 2007). Such rules or strategies are often dynamic and subject to evolution 392 

(See Section 3.8 for one way to capture such evolution).  In modeling prehistoric settlement systems 393 
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(e.g., Kohler et al. 2002) or human-environment interactions (e.g., Axtell et al. 2002), most of the 394 

decision rules (if not all) are derived this way unless there are historically documented analogs. 395 

3.6 Participatory agent-based modeling 396 

A variant in the family of experience- or preference-based decision models (Section 3.5) is the so 397 

called participatory ABM, in which real people directly tell the modeler what they will do (Purnomo et al. 398 

2005; Simon and Etienne, 2010).  In modeling CHANS, it is often a challenge to communicate between 399 

specialists (e.g., ABM modelers) and non-specialists. Agents are considered as individuals with 400 

autonomy and intelligence, who keep learning from (thus updating their knowledge base), and adapting 401 

to, the changing environment (e.g., “primitive contextual elements”; Tang and Bennett 2010) and other 402 

agents (e.g., Bennett and Tang, 2006; Le et al. 2010). Participatory agent-based modeling has arisen in 403 

this context, which is conceptually similar to “companion modeling” in the ecology literature. 404 

Participatory modeling involves stakeholders in an iterative process of describing contexts (e.g., local 405 

environment), soliciting decisions, and envisioning scenarios arising from the corresponding decisions.  406 

Participatory agent-based modeling incorporates on-site decision making from real agents, 407 

facilitating “information sharing, collective learning and exchange of perceptions on a given concrete 408 

issue among researchers and other stakeholders” (Ruankaew et al., 2010). A particular application is role 409 

playing of real stakeholders, which has been successfully used in soliciting decision rules through direct 410 

observation of the player’s behavior. Success of using this approach has been reported from several 411 

study regions such as Northeast Thailand (Naivitit et al., 2010), the Colombian Amazonian region (Pak 412 

and Brieva, 2010), Senegal (D'Aquino et al., 2003), and Vietnam (Castella et al., 2005b; see D'Aquino et 413 

al., 2002 for review). 414 

3.7 Empirical- or heuristic rules  415 
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Agents are assigned rules that are derived from empirical data or observations without a strong 416 

theoretical basis or other guidelines.  Models using rules of this type are sometimes called “heuristic 417 

rule-based models” (Gibon et al. 2010). Even though also based on data, researchers usually have to go 418 

through relatively complex data compiling, computation, and/or statistical analysis to obtain such rules, 419 

not as straightforward and self-evident as that in Section 3.5. Some demographic decisions are usually 420 

modeled in a stochastic manner. For instance, male adults may move to the Gulf of Guinea basin to find 421 

jobs during the dry season at a certain probability (Saqalli et al., 2010); children between 16-20 may go 422 

to college or technical schools at a probability of 2% per year (An et al., 2005).  Zvoleff et al. (in 423 

preparation) uses statistical models (e.g., regression) to make links between fertility behavior choices 424 

and different pre-determined socioeconomic and land use variables (the choice of these variables still 425 

depends on theory).  426 

Neural network or decision tree methods, largely black- or grey-box approaches (usually little 427 

mechanistic explanations or theories are provided, if any), are sometimes used to derive or “learn” rules 428 

from empirical data. In modeling strategies of ambulance agents that aim to save victims, experts were 429 

provided with a set of scenarios that increase in information complexity (e.g., location and number of 430 

hospitals, ambulances, and victims, whether there is enough gasoline). Then the set of criteria or 431 

decision rules, usually not elicitable or elicitable only with difficulty, was learned through analyzing the 432 

experts’ answers under the above scenarios using a machine-learning process (e.g., a decision tree; Chu 433 

et al., 2009). This type of black- or grey-box approach, though statistics-based, is different from many 434 

other instances in which statistical analyses (e.g., regression) are used under theoretical (e.g., 435 

microeconomics or others reviewed above) guidance. 436 

When data on deterministic decision making processes are unavailable, it is sometimes a practical 437 

way to group agents according to a certain typology (e.g., one derived from survey data). Such 438 
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typologies usually account for differences in making decisions, performing some behavior, or 439 

encountering certain events (e.g., Antona et al., 1998; Loibl and Toetzer, 2003; Mathevet et al., 2003). In 440 

some instances, each agent type may be assigned a ranking or scoring value for a specific decision or 441 

behavior type (out of many types) according to, e.g., experts’ knowledge or empirical data (e.g., the 442 

‘Who Counts’ matrix in Colfer et al., 1999). 443 

Examples of this type of decision model are numerous. In one example focusing on land use 444 

decisions, five types of farmers (i.e., hobby, conventional, diversifier, expansionist-conventional and 445 

expansionist-diversifier) were identified based on both the willingness and ability of farmers in terms of 446 

farm expansion and diversification of farm practices. For each type, empirical probabilities were found 447 

for optional activities such as “stop farming” or “buying land” (Valbuena et al., 2010). In modeling land 448 

use decisions at a traditional Mediterranean agricultural landscape, Milington et al. (2008) adopt a 449 

classification of “commercial” and “traditional” agents. These agents make decisions in different ways: 450 

commercial agents make decisions that seek profitability in consideration of market conditions, land-451 

tenure fragmentation, and transport; while traditional agents are part-time or traditional farmers that 452 

manage their land because of its cultural, rather than economic, value. Similar efforts include the agent 453 

profiling work by Acosta-Michlik and Espaldon (2008) and the empirical typology by Jepsen et al. (2005), 454 

Acevedo et al. (2008), and Valbuena et al. (2008).  455 

Deriving rules this way (i.e., exposing empirical data to statistical analysis), modeling needs can be 456 

temporarily satisfied. However, questions related to why decisions are so made are largely left 457 

unanswered. For instance, Evans et al. (2006) point out that many statistical tools can be employed to 458 

correlate particular agent attributes (e.g., age) with specific land-use decisions, which may be “useful for 459 

policy purposes. However, this practice does not necessarily identify why landowners of a certain age 460 

make these decisions.” Hence it would be ideal that beyond those empirical or heuristic rules, actual 461 
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motivations, incentives, and preferences behind those decisions can be derived. This will not only 462 

provide ad hoc solutions to the specific problem under investigation, but also advance our generic 463 

knowledge and capacity of modeling human decisions in complex systems (CHANS in particular). 464 

3.8 Evolutionary programming 465 

This type of decision making, in essence, belongs to the category of empirical or heuristic decision 466 

models (Section 3.7). It is separately listed as its computational processes are similar to natural selection. 467 

Agents carry a series of numbers, characters, or strategies (chromosomes; Holland 1975) that 468 

characterize them and make them liable to different decisions or behaviors. The selection process favors 469 

individuals with the fittest chromosomes, who have the capacity of learning and adaptation. Copying, 470 

cross-breeding, and mutation of their chromosomes are critical during the adaptation or evolution 471 

process. Under this umbrella, genetic algorithms (Holland, 1975) have emerged and found applications 472 

in a range of ecological/biological studies (see Bousquet and Le Page, 2004 for review) as well as studies 473 

on emerging social organizations (Epstein and Axtell, 1996). In CHANS research, few but increasing 474 

empirical studies fall into this category. Below are examples that illustrate this line of modeling decision 475 

making.  476 

In the human-environment integrated land assessment (HELIA) model that simulates households’ 477 

land use decisions in the southern Yucatán (Manson and Evans, 2007), household agents use their 478 

intricate function 𝑓(x) to calculate the suitability when siting land use in a “highly dimensional stochastic” 479 

environment (Manson 2006). This function 𝑓(x) is considered to consist of usually multi-criteria (and 480 

likely multi-step) evaluation processes that are unknown or inarticulate. Through some symbolic 481 

regression (genetic programming in particular) between land change data (Y, response variable) and 482 

spatial predictor variables (X ={X1,…Xn}), an empirical function 𝑓(𝑥) can be estimated to approximate 483 

𝑓(x) (e.g., through minimizing the residuals between data and estimated suitability). During the 484 
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estimation process, multiple parental land use strategies or programs (similar to the above 485 

chromosomes) compete and evolve to produce offspring strategies through imitating/sharing, 486 

interbreeding, and mutation (Manson 2005).  487 

Strategies computed through genetic programming are found to be consistent with those obtained 488 

from general econometric models or rules of thumb solicited from local interviews (Manson and Evans, 489 

2007). This consistency increases the reliability of genetic programming on the one hand; at the same 490 

time it necessitates more explorations for why and when genetic programming should be used in place 491 

of traditional modeling approaches.  A variant under this type of studies is the concept of tag (a sort of 492 

numerical code that explains skills or behavior). Agents, through comparing and adopting each other’s 493 

tags, interact with each other and are collectively (usually unwittingly) accountable for the emerging 494 

patterns (Riolo et al., 2001). 495 

3.9 Assumption and/or calibration-based rules 496 

Hypothetical rules can be used in places where inadequate data or theory exists. In public health or 497 

epidemiology field, daily activity routines are important for researchers to model the diffusion of 498 

infectious diseases; human agents are infected in a stochastic manner that involves untested 499 

assumptions (e.g., Muller et al. 2004; Perez and Dragicevic, 2009). Specifically in Perez and Dragicevic 500 

(2009)’s model, it is assumed that the length of time for out-of-house daily activities for an individual is 501 

10 hours (time of high risk of being infected), which includes two hours for public transportation and 502 

eight hours in work places, study places, or places for doing some leisure activities.  People within this 503 

10-hour window are assumed to have the same risk of infection, which may be subject to changes if new 504 

observations or theories arise. Temporarily, such untested hypothetical rules are accepted to 505 

operationalize the corresponding model. 506 
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Similarly, time-dependent human activities, varying across different land use or agent types (e.g., 507 

rice growers, wine growers, hunters) or time windows, are documented and assumed constant over 508 

time. Such data, including the constancy assumption, are used to simulate how likely humans may be 509 

infected by Malaria over space and time assuming constant mosquito (An. Hyrcanus) biting rate (Linard 510 

et al. 2009), or how likely hunters may capture game animals (Bousquet et al. 2001). In another instance, 511 

“[At] an age specified by the user (the user has to make these assumptions related to decision rules), 512 

children leave the house in search of an independent livelihood or other economic opportunities” 513 

(Deadman et al. 2004). There are many other simulation studies that similarly document the timing and 514 

location of different human activities, and assume a certain activity, location, or time may subject the 515 

associated agents to certain events (e.g., Roche et al. 2008; Liu et al. 2010) or strategies (e.g., Roberts et 516 

al. 2002) at the same probability.  517 

Alternatively, calibration-based rules are used to choose among candidate decision models. 518 

Specifically, such candidates are applied to the associated ABM, which may produce various outcomes. 519 

By evaluating the defensibility of the outcome or comparing the outcome with observed data (if 520 

available), the modeler decides what decision model is most likely to be useful. For instance, in Fontaine 521 

and Rounsevell (2009)’s model that simulates residential land use decisions, several values, usually 522 

ranging from low to high, are chosen for a set of carefully selected parameters (e.g., weight for distance 523 

to coastline or road network). Then all the combinations of these parameter values are entered into the 524 

model for simulation runs. Then the set of parameter values that give rise to resultant household 525 

patterns most similar (e.g., in terms of correlation coefficient) to real data at a certain aggregate level 526 

are retained. In some instances decision or behavior patterns of economic agents per se are of interest, 527 

and this approach is used to detect the most plausible one(s) (e.g., Tillman et al. 1999). 528 
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 There are several disadvantages associated with this type of decision model: 1) researchers usually 529 

do not have all the possible candidate rules, thus the chosen one may not be appropriate; 2) only a 530 

limited number of rules should be set by calibration testing; errors in ABMs could cancel out each other 531 

and give rise to problematic calibration outcomes (e.g., ruling out a good candidate). Therefore rules of 532 

this type should be used with caution. Calibration in ABM is often cited as a weakness of ABM that 533 

needs to be improved (e.g., Parker et al., 2003; Phan and Amblard, 2007). 534 

 535 

4. Conclusion 536 

This paper does not mean to give a complete list of all human decision models used in CHANS 537 

research. It rather focuses on the ones that are relatively frequently used in the hope that CHANS 538 

modelers (especially beginners) may find them helpful when dealing with modeling human decisions.  It 539 

is also noteworthy to point out that the above nine types of models are by no means exclusive. Actually 540 

in many instances, hybrid models are employed in simulating CHANS decision making processes. 541 

According to this review, the decision or behavior models related to human decision making range 542 

from highly empirically-based ones (e.g., derived through trend extrapolation, regression analysis,  543 

expert knowledge based systems, etc.) to more mechanistic or processes-based ones (e.g., econometric 544 

models, psychological models). It is clear that both approaches for modeling human decisions along this 545 

gradient (from empirically-based to processes-based) have their own strengths and weaknesses, and 546 

should be employed to best suit the corresponding contexts (e.g., objectives, budget and time 547 

limitations) and complement each other.  548 

The CHANS related complexity (as reviewed in Section 1) makes modeling of human decision highly 549 

challenging. Humans make decisions in response to changing natural environments, which will in turn 550 
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change the context for future decisions. Humans, with abilities and aspirations for learning, adapting, 551 

and making changes, may undergo evolution in their decision making paradigm. All these features 552 

contribute to the above challenge. For instance, it is considered “something that is still far away” to 553 

incorporate realistic reasoning about beliefs and preferences into understanding and modeling human 554 

decision processes (Ligtenberg et al., 2004). Without more process-based understanding of human 555 

decision making (e.g., the wayfinding process model by Raubal 2001), it is very difficult to appreciate 556 

complexity at multiple dimensions or scales, achieving in-depth coupling of the natural and human 557 

systems.   558 

This research thus advocates that while keeping up with empirically-based decision models, 559 

substantial efforts be invested in process-based decision-making mechanisms or models to better 560 

understand CHANS systems. In many instances, process-based models are the ones “capturing the 561 

triggers, options, and temporal and spatial aspects of an actor’s reaction in a [relatively] direct, 562 

transparent, and realistic way” (Barthel et al. 2008). During this pursuit, agent-based modeling will play 563 

an essential role, and will become enriched by itself. Whatever decision models are used, the KISS rule 564 

(“keep it simple, stupid”; Axelrod 1997, p.4-5) may still be a good advice given the complexity we face in 565 

many CHANS. By keeping the behaviors available to agents limited and algorithmic, we as modelers will 566 

be able to produce stories that, if not convincingly true, cannot be automatically “categorized as false 567 

because they contradict what we know of human capacities” (Luistick, 2000). 568 

Modeling human decisions and their environmental consequences in ABM is still a combination of 569 

science and art. Comparison and cross-fertilization between ABM models developed by different 570 

researchers is a daunting task. Similar to the ODD (Overview, Design concepts, and Details) protocol for 571 

ecological studies (Grimm et al., 2006) and the agent-based simulation taxonomy for environmental 572 

management (Hare and Deadman 2004) it would be desirable to have similar protocols for CHANS-573 
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oriented ABMs that aim at modeling human decisions. This paper thus advocates that generic protocols 574 

and/or architectures be developed in the context of the specific domain of research questions. 575 

Advancements in computational organization theory, such as behavioral decision theory and 576 

institutional theory, may provide useful insights for establishing such protocols or architectures (Kulik 577 

and Baker, 2008). Such protocols or architectures, though impossible to serve as panaceas, may be used 578 

as benchmarks or checklists, offering recommendations on model structure, choice of decision models, 579 

and a few key elements in modeling human decisions.  580 

As in the past, CHANS modelers will continue to benefit from other disciplines such as ecological 581 

psychology (directly addressing how people visually perceive their environment; Gibson 1979), 582 

biology/ecology (e.g., genetic programming), sociology (e.g., organization of agents), political science 583 

(e.g., modeling of artificial societies), and complexity theory (e.g., complexity concept). It is hoped that 584 

research on how to model human decisions in CHANS will not only advance theories, but also bring 585 

forward new opportunities in advancing agent-based modeling. 586 

 587 
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Figure legends 1003 

Fig. 1. Objective-oriented programming with separation between implementation and surface (reprint 1004 

with approval from the publisher, see An et al. 2005). 1005 

Fig. 2. Dynamics of publications related to the ABM based on our search criteria (1994-2010). 1006 
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