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Despite being central to the study of many

disciplines, spatiotemporal analysis has not been

de ned in a uni ed way. This encyclopedia entry

aims to bring together the di"erent uses of, and

methodologies for, conducting spatiotemporal

analysis in order to provide a more centralized

understanding of the topic. To achieve this, we

de ne spatiotemporal analysis as “the depiction,

representation, visualization and tracking of

changing location in space and time of a certain

phenomenon or event of interest, which are

often (yet not necessarily) connected to seeking

understanding about the mechanisms behind

such data of spatial locations and temporal

stamps” (An et al. 2015). Spatiotemporal analysis

is also referred to as spatio-temporal analysis,

space time (sometimes space–time) analysis,

spatial temporal (sometimes spatial-temporal)

analysis, and the like. Following an introduc-

tion of its historical, intellectual context, this

entry investigates the range of disciplines that

contribute to spatiotemporal analysis and the

speci c methods employed for conducting it. To

conclude the entry, the future directions of spa-

tiotemporal analysis are presented.

Intellectual context

From early civilizations to modern times,

space and time have been the two fundamental

domains under which people have characterized
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events and phenomena of interest around them.

Space and time, both abstract and often invisible,

are conceptualized in a variety of ways. Space can

be understood as “absolute space,” which can be

characterized with a number of speci c proper-

ties (Hinckfuss 1974). Under this view, space and

time exist in their own right, which represents

an object-independent framework. Space, along

with time, is considered as a container within

which all things or events of interest take place.

Newton’s analysis of space and time followed

this line of conceptualization. To describe the

laws of motion in regard to the trajectories of

moving objects in space and time, he used the

languages of mathematics (e.g., geometry and

calculus). In his absolute framework, the objects

move and change their properties in space and

time, but the framework or the container itself

remains unchanged (see Peuquet 2002).

In an alternative conceptualization of the

so-called relative space proposed by Leibniz,

space is created di"erently (Cresswell 2013).

In contrast to a pre-existing container in the

absolute space concept, relative space is concep-

tualized to represent relative locations among

objects. Along this line, Minkowski extended

the traditional three-dimension (x, y, and z)

geometry to include time as a fourth dimension,

which forms the basis of the united, relativistic

space–time concept. The relative view of space

continued in its development and culminated in

Einstein’s work on theory of relativity. Research

in physics and mathematics, in particular, has

enriched the conceptualizations of space–time at

very large and very small scales, such as those in

electronics, mechanics, and cosmology. At the

human and landscape scale, conceptualizations

of space–time analysis have been fertilized by the
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study of biology, ecology, hydrology, epidemiol-

ogy, and geography (especially the subdisciplines

of geographic information systems (GIS) and

remote sensing).

Springing from the ideas of Kant and his

fellow philosophers, earlier scholars largely held

a dichotomous view of space and time, that is,

that they are two separate key categories within

which all activity occurs. Early geographers,

such as Darwin, von Humboldt, and Ritter,

focused their academic e"ort on depicting and

understanding places, including their physical

and human di"erences (Cresswell 2013). Under

this view, space and time are not considered

in tandem. For instance, regional geographer

Hartshorne regarded that history aims to address

changes in time, while geography addresses

di"erences in space (Cresswell 2013). Early geo-

graphic models took a stance of either ignoring

time or viewing it as a function of spatial variables

such as distance or transportation costs (e.g., Von

Thünen, Christaller; Cresswell 2013). Move-

ment and transportation, which are concerned

with time as much as space, can be “e"ectively

studied in spatial terms” (Cresswell 2013). This

means that movement is dictated by economics:

supply and demand, least net e"ort, and travel

costs (Cresswell 2013). Geographers, especially

regional geographers, continued with this tradi-

tion until the so-called quantitative revolution

in geography in the mid-twentieth century. The

quantitative revolution has also witnessed the

rise of spatial science within geography and the

entry of geographers into the  eld of quantitative

modeling. Since then spatiotemporal analysis has

boomed in both quantity and quality (An et al.

2015), largely due to the advent of computers

and advances in computing and analytical power.

Spatiotemporal analysis, as de ned earlier,

seeks to answer questions of both “when” and

“where” (and, to some extent, “why” at the

time or location) things occur. However, people

use the words “when” and “where” in a variety

of di"erent ways (Couclelis 1999). The word

“when” can be used in a relative sense (e.g.,

one event happens between two storms), or in

an absolute sense that refers to time span (e.g.,

time duration of a storm) or clock time (e.g.,

at which time point a storm occurs). Similarly,

space can be de ned and used in varying ways.

These ambiguities have led to a rich literature

of the nature of space and time in physics and

philosophy. In addition to the absolute/relative

classi cation, Yuan, Nara, and Bothwell (2013)

bring in another dichotomous classi cation

of realism versus idealism, which refers to

whether space–time, objects, or events are

mind-independent (realism) or mind-dependent

(idealism). The uniting principle underlying

these conceptualizations and classi cations is

that space–time representation lays a foundation

for subsequent spatiotemporal analysis meth-

ods as well as the corresponding results (see

Yuan, Nara, and Bothwell 2014 for examples

of this principle). Spatiotemporal analysis must

recognize the intimate link between space and

time, implying that changes of a phenomenon

or object over either space or time would often

inherently include a change in the other. This

endorses the importance of putting space and

time together to perform spatiotemporal (in

contrast to spatial or temporal) analysis, and

helps explain the exponential increase in number

of publications related to spatiotemporal analysis

since the late 1940s (An et al. 2015).

Spatiotemporal analysis in geography

The absolute or relative conceptions of

space–time structure can be found in spa-

tiotemporal models in geography (Massey 1999).

In an absolute representation, researchers use

 xed coordinate systems to represent the study
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site and events of interest, mark the changes in

the associated variables, and explain or predict

the pattern of change over time. Traditional

geographic models represent the physical envi-

ronment of interest in a two-dimensional space

of grid or vector, without speci c representation

of time as a key dimension of concern. Largely

ignoring time, such models are essentially spatial

models. As time has moved on, the possibility

of a space–time conceptualization has been

explored by geographers. Early spatiotemporal

analysis in geographic models often resorts to a

GIS. Traditional GIS have elegantly represented

space, but not so time (Peuquet and Duan 1995).

The mainstream space–time representation in

traditional GIS is through the snapshot model,

where a spatiotemporally continuous world is

shown at limited snapshots in time (Peuquet and

Duan 1995). To address some di%culties faced by

the snapshot model, the event-based spatiotem-

poral data model (ESTDM) by Peuquet and

Duan (1995) allows organization of space–time

data by time. Other data models, including the

space–time composites model, the spatiotempo-

ral object model, and the three-domain model,

o"er di"erent tradeo"s between representing

both space and time (An and Brown 2008).

On the other hand, a relatively new, object-

oriented approach is arising in the geographic

modeling and analysis arena. This approach

leans more toward the relative representation of

space and time. Under this approach, features

on the earth’s surface (e.g., land parcels, people,

households) are conceptualized and represented

as objects that are relatively independent entities,

which may change their locational and nonlo-

cational attributes over time – some of them

may even have a certain level of intelligence and

autonomy, make decisions, and/or adapt to the

changing environment or the changes made by

other entities (see the section for agent-based

models below).

Spatiotemporal analysis techniques

This section sets out to give an overview of spa-

tiotemporal analysis methods that have been used

in geography, environmental sciences, and related

disciplines. Each method will have a brief discus-

sion of how it represents time and space, what

type of data is required, what type of output it

may yield, and whether it is primarily focused on

prediction or explanation. These methods have

been selected because they share several impor-

tant features: they allow representation, visual-

ization, or quanti cation of a system over space

and through time in a dynamic way; they help in

identifying mechanisms for observed changes in

spatial patterns over time; and/or they can predict

changes in temporal patterns by analyzing spatial

data over time steps.

Time geography

Unlike early spatial science with focus on

place-based aggregations and generalizations,

time geography has arisen attempting to integrate

individual trajectories of human movements in

both space and time (Hägerstraand 1970). As

a pioneer, Hägerstraand (1970) emphasized the

need “to have not only space coordinates but also

time coordinates” because people exist both in a

speci c space and at a particular point in time.

In his seminal work on space–time life paths, a

horizontal plane represents position in space and

a perpendicular axis represents time. Space–time

prisms, often derived from space–time life paths,

are a powerful tool to show movement patterns

within an individual’s world, which are subject

to physical and physiological constraints and also

conform to public and personal decision-making

(Hägerstraand 1970).

Recent years have witnessed rapid improve-

ment in geospatial information technology,

paving the way for quickly collecting individual,

3
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georeferenced human activity data in large

amounts or over large spatial extents (Kwan

2004). In parallel with this increasing data

availability, a number of models and techniques

are being developed to capture, represent, and

analyze such data, including the ones focusing

on the exploration, visualization, and general-

ization of large space–time trajectory datasets

in the GIS software environment (Kwan 2004).

Such models and rich datasets have also opened

new perspectives and opportunities in geocom-

putation; for example, real-world accessibility

measures can be developed and obtained by

calculating the maximum travel distance of

individuals subject to multiple constraints (Kwan

2004; Lenntorp 1976). Among these models

and techniques, statistical methods have played

an essential role in time geography, allowing

quantitative analysis and comparison of the

space–time trajectories of di"erent individuals or

groups. The statistical methods allow calculation

of a number of di"erent measures, including the

Hausdor" distance, Fréchet distance, dynamic

time warping algorithm, and longest common

sequence algorithm. Also worthy of mention

in time geography is space–time path clustering

analysis, which classi es individuals sharing

similar space–time paths into groups.

There is no doubt that the time geographic

approach is particularly important in space–time

analysis because for individuals under investiga-

tion, both spatial coordinates and temporal coor-

dinates are tracked down continuously and given

equal weights in later data analysis. Nonethe-

less, it is a big challenge for time geographic

researchers to address patterns and processes at

multiple spatial and temporal scales. Currently,

most activities captured in time geography

research operate either at a small spatial scale or

over short time periods, or both. Seldom have

movements over larger distances and larger time

scales, without sacri cing spatial or temporal

resolution of data collection and analysis, been

included and characterized well in this type of

continuous tracking (Meentemeyer 1989).

Analysis of time series spatial data

One category of spatiotemporal analysis method-

ologies consists of analysis of time series spatial

data using a number of spatial statistical and

analytical techniques. Broadly, this category

includes time-based descriptive statistics, statistics

for clustering and dispersion, and establishment

of correlations or causal relationships through

regression analysis. Change through time is

assessed either qualitatively or quantitatively,

through the comparison of maps and graphs

at di"erent time steps, and by graphical output

of statistical change over time. Below several

increasingly recognized methods are introduced,

which are powerful at analyzing time series

spatial data and potentially unveil the mechanism

behind such data – for nearly all these methods,

spatiotemporal patterns are represented by the

so-called snapshot data model, where space at

one time is represented in a certain GIS layer

(often raster unless otherwise speci ed), and time

is represented at (and constrained by) the associ-

ated data collection frequency.

Exploratory space–time data analysis

This category of spatiotemporal analysis attempts

to develop novel measures (including graphs) to

show trends in both space and time. A number of

space–time statistical techniques in this general

category are included in commercial GIS. For

instance, ArcGIS has enabled the visualization

of events in three dimensions, with the time

dimension being displayed vertically, which is

conceptually similar to the space–time paths

in time geography. The Crimestat software has

tests for spatiotemporal clustering, di"usion,

4
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and interaction (Levine 2004). The Space–Time

Analysis of Regional Systems (STARS) package

is designed to perform exploratory analysis of

spatial data with numerous time points (Rey and

Janikas 2006). STARS o"ers several important

functions, including qualitatively displaying

spatial data patterns over time, and calculating

descriptive statistics such as global and local

Moran’s I, and the Gini coe%cient (Rey and

Janikas 2006). Though spatial analytical and

statistical software tools are not elaborated here,

it is worth mentioning that software develop-

ment is one of the rapidly improving areas for

spatiotemporal analysis.

Identifying spatiotemporal clusters, for

example epidemiologists identifying clusters of

disease outbreaks, stands out as a very important

type of applications. Many useful indices and/or

tests have thus been developed for di"erent pur-

poses: (i) the Barton and David test, which aims

to  nd if spatial patterns of events vary by tem-

poral cluster; (ii) the Knox test, which focuses

on  nding whether events in one time–space

window would di"er from the expected amount

in the same window given the total number and

time range of all events; (iii) the Mantel Index,

which helps  nd correlation between distance

and time interval (Levine 2004); and (iv) many

other indices, including frequency, duration,

intensity of events, spatiotemporal covariance

structures, and space–time hot spot indices (local

indicators of spatial autocorrelation or LISA,

bivariate LISA, Getis-Ord Gi*), which continue

to be developed to assess the spatiotemporal

patterns of the phenomenon or event of interest.

In addition to  nding clusters, assessing

changes in individual feature’s locations in a

GIS environment is another application domain

of spatiotemporal analysis. Worthy of mention

is the Spatio-Temporal Moving Average and

Correlated Walk Analysis by Levine (2004),

which facilitates tracking of the mean location of

a moving event/feature and thus helps prediction

of its location in the future. All these methods

conceptualize a spatially continuous world at

limited snapshots in time (Peuquet and Duan

1995), and the snapshot GIS data model (often

raster layers over multiple time points) underlies

the corresponding data collection and analysis.

Spatial panel data analysis

Spatial panel data refer to time series observations

of a number of spatial units over time (Elhorst

2010), and often raster layers over multiple time

points are data input. Spatial panel data analysis

consists of two types of models. The  rst type

includes dynamical models that predict the

dependent variable at a given time by its value at

the prior time and a set of independent variables

using the so-called di"erence equation models.

Though conceptually such models are ideal for

spatiotemporal analysis, they are considered less

compelling and more complex and thus not

commonly employed in literature. The second

type is related to two kinds of multilevel models

(MLMs), that is,  xed e"ects and random e"ects

models, where the multi-time observations

for each individual unit (e.g., land parcels) are

lower-level (level-1) data, and the individual

units are higher-level (level-2) data. This data

structure is the same as that in multilevel models

(see the section for MLMs below). The model

for this type of panel data analysis is similar to an

ordinary least squares (OLS) regression model in

many aspects (Elhorst 2001; Petersen 2009).

What distinguishes the above spatial panel data

analysis from regular OLS regression models is a

spatial e"ect term that deals with the impact of

neighboring spatial units on the unit of interest.

Depending on how the space–time autocor-

relation in data is to be addressed, researchers

may use spatial lag models (when the dependent

variable of interest is autocorrelated) or spatial

5
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error models (when residuals from OLS models

are autocorrelated; Anselin, Le Gallo, and Jayet

2008; Elhorst 2010). Then essentially spatial

panel data analysis has to extend the  xed (or

random) e"ects models with a spatially lagged

dependent variable or with a spatial error term.

Therefore the challenges related to MLMs, for

example the need for large and balanced samples

and the inability to incorporate endogenous pre-

dictor variables, are also extant (see the section

for MLMs below). Also, model estimation may

be biased by the spatial dependence among

observations, and this complication may need

special attention, according to Anselin, Le Gallo,

and Jayet (2008).

Markov chain modeling

This type of model aims to represent changing

temporal dynamics and spatial patterns of spatial

units (e.g., individual cells/pixels). With input

being often raster layers over multiple (at least

two) time points, Markov models often focus on

predicting or projecting future spatiotemporal

patterns (e.g., in terms of raster maps). All units

have spatial coordinates, and their attributes can

change over time. In a Markov process, the land-

scape type at a given location and certain time

depends only on its previous type and a transi-

tion probability. Transition probabilities, often

presented in a matrix form, are obtained through

assessing historic conversions between transition

types.

Markov chain models are logically simple and

useful for exploring patterns of spatiotemporal

changes within a relatively short time span.

Nonetheless, they have a number of drawbacks

that deserve attention of spatiotemporal modelers

(An and Brown 2008). Primarily, the assump-

tions of spatial independence and stationarity

(in time and space) may not hold true in many

applications (NRC 2014). In addition, Markov

models focus explicitly on prediction, and

provide little insight into causality or low-level

processes that generate the observed spatiotem-

poral patterns (NRC 2014). In many studies,

Markov chain models are made more useful

when they are integrated with other modeling

or analysis techniques (see the section for cellular

automaton).

Bayesian spatiotemporal models

Bayesian statistical models have been adapted for

use in spatiotemporal analysis. With input being

often raster layers over multiple time points,

Bayesian models often focus on predicting future

spatiotemporal patterns (e.g., in terms of raster

maps) or explaining observed patterns. In this

type of model, a spatial dependent variable (with

both spatial and temporal stamps) is described

as a function of both time and a number of

parameters (that are related to the speci c site).

According to prior knowledge (e.g., physical

laws) about the phenomena or events of inter-

est, a priori statistical distributions are used in

order to impose constraints on a model that

may have too many parameters, for example

through a conditional autoregressive function.

This results in a relatively small number of

site-independent hyperparameters. Posterior

distributions of site-speci c parameters are used

to update the parameters based on empirical

spatiotemporal data, speci cally by maximizing

the probability of observing the empirical data

through modifying parameter values. In deter-

mining these probabilities, researchers could use

techniques such as the Markov Chain Monte

Carlo method to generate samples for these

posterior distributions. Weaknesses related to

Bayesian spatiotemporal models include the fact

that subjectivity might come into play when

choosing either the posterior distribution or the

a priori distribution, and also that modelers

may have to assume some untested parametric

6
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distributions between space, time, the dependent

variable, and the independent variables.

Survival analysis

Survival analysis is a methodology that success-

fully integrates both time and space in order to

understand the contribution of di"erent mech-

anisms to observed spatiotemporal patterns.

While related to, and comparable to, more tra-

ditional static spatial analysis techniques such as

logistic regression, it represents a more dynamic,

integrated method for spatiotemporal analysis

(An and Brown 2008; Wang et al. 2013). With

input being raster or vector layers over multiple

time points, survival analysis models are very

useful for either prediction (e.g., in terms of

raster maps) or explanation purposes. The tech-

nique has been adapted to land-change studies

from a diverse range of earlier uses, including

public health and demography (An and Brown

2008). While the name of the methodology is

derived from investigations into mortality, it can

easily describe the survival of a particular land

unit, that is, not being changed to an unintended

land use or land cover. Indeed, in recent years, a

multitude of studies have used survival analysis

to  nd drivers of land change (An and Brown

2008; Wang et al. 2013).

The hazard function is central to survival

analysis. Based on theoretical assumptions or

empirical event frequency and timing, the haz-

ard function can be calculated as a measure of

the risk that a change will occur at a given space

and time point. Related to survival probabili-

ties, the hazard function di"ers in its ability to

either increase or decrease depending on the

in=uence of explanatory variables over time.

Survival analysis uses information at all of the

time steps to calculate the hazards for each

individual pixel over time. The hazard function

is regressed against a set of predictor variables,

including those time-dependent ones. Because

it accounts for dynamic values of these variables

at di"erent time steps, a key strength of survival

analysis is that it allows varying contributions of

each time-dependent predictor variable to the

hazard over time. Survival analysis is also suited

to accounting for censored data: if an event

happens outside of or in between time steps in a

set of time series data, it can still be included in

analysis and contribute to estimating the related

model parameters.

Despite its strengths in incorporating time

into statistical studies of change, survival analysis

has a number of drawbacks. First, it is weak

in handling continuous changes in a certain

dependent variable because essentially it deals

with events or qualitative changes that happen

at speci c time points. Second, and related to

the  rst drawback, it depends on the use of sub-

jective thresholds to specify whether change has

occurred if the dependent variable is continuous.

Percent of a land cover cannot be included in

the corresponding dependent variable, which

must be declared as one type or the other based

on a cuto" value. Third, the hazards of di"erent

spatial units sometimes may require certain

untestable assumptions to be made; for example,

the hazards are constant within each period in

the piecewise exponential model.

Multilevel models and latent trajectory

models

Multilevel models (MLMs) and latent trajec-

tory models (LTMs) are two types of relatively

new models that contribute to spatiotemporal

analysis. MLMs use data at multiple hierarchical

levels, including individuals who are members

of a group or neighborhood, in order to account

for the clustering e"ect that may exist within

individuals of the same higher-level grouping

(Browne and Rasbash 2004). These clustering

e"ects violate the assumption of independence

7
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in standard OLS, meaning that conclusions of

statistical signi cance may be drawn incorrectly

at the individual level. In various demonstrated

case studies in health and education, signi cance

of outcomes at the individual level were found

to no longer be signi cant when clustering

due to higher-level group membership, such

as classrooms or hospitals, was accounted for.

Functionally, MLM di"ers from OLS regression

by allowing variability in both the intercept and

the coe%cients of the model. For each intercept

or coe%cient, there is one random term that is

allowed to change from entity to entity, and/or

a  xed term that describes the in=uence of the

higher-level grouping on each individual within

the same group.

MLMs are used in spatiotemporal analysis

because of their ability to investigate time series

spatial data by nesting multiple time measure-

ments within each individual unit. In this case,

time measurements would be the level-1 units,

individual observations (which could be pixels)

would be level-2 units, the neighborhood or

other higher-level group would be level-3 units,

and so on (Subramanian 2010). By structuring

spatiotemporal analysis in this way, causal mech-

anisms that are operating at di"erent levels over

time can be revealed. Challenges in using the

technique include the need for su%ciently large

populations of higher-level groups in order to

draw a sample of adequate size, as well as the

related need for signi cant computing power

to conduct analysis of such large datasets. In

addition, MLM models do not allow endo-

geneity within the model, that is, they do not

allow parameters of the model to function as

predictors for other variables (Preacher et al.

2008).

LTMs are related to MLMs, and in some cases

result in equivalent models for spatiotempo-

ral analysis. This technique, however, is more

explicitly aimed at analyzing longitudinal data in

order to  nd the impact of time and a number of

independent variables on a dependent variable

(Guo and Hipp 2004). The input data of both

LTMs and MLMs could be either vector or raster

maps at multiple times, and both can be used

to predict or explain spatiotemporal patterns.

Using patterns of change (such as quadratic

or linear, but not necessarily monotonous

increase or decrease) in the response variable

y as latent variables, LTMs are able to model

change patterns in y as latent variables, and

estimates complex causal relationships or plau-

sible pathways among these change patterns

and a set of independent variables (Preacher

et al. 2008). Weaknesses of LTMs include the

assumption that the dependent variable follows

a mathematical function in time, when the

reality may be more complex, and also the

assumption that LTMs are limited in integrating

hierarchical data in the way that MLMs do.

By combining LTMs and MLMs into hybrid

multilevel latent trajectory models, the strengths

of both can be accentuated and the weaknesses

minimized.

Spatiotemporal simulation techniques

The previous sections focus on statistical models

that establish empirical relationships between

drivers and outcomes in order to derive under-

standing about processes from observed patterns

(NRC 2014). Another category of spatiotempo-

ral models is that of simulation-based ones that

focus more explicitly on the processes through

which changes develop. These rule-based mod-

els, including cellular automaton (CA) and

agent-based modeling (ABM), concentrate on

how systems function, and how lower-level

processes result in emerging higher-level pat-

terns.

8
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Cellular automaton

CA models portray the spatial variable of interest

in a contiguous array of cells (or pixels), and

the cells can change between a certain num-

ber of predetermined states (e.g., land-use and

land-cover types) as time passes (Parker et al.

2003). CA rules and parameters are set on a

time step basis such that each snapshot outcome

represents the system’s status at a certain step.

CA models can be used for either prediction or

explanation purposes. In these models, change

is dictated by transition rules, under which the

change of state of a certain cell of interest is

often dependent on the state of neighboring

cells. For instance, one rule might state that an

undeveloped cell that has four developed cells in

its neighborhood may remain in its undeveloped

state due to “crowding.”. Due to these simple

rules, the states of all cells may change over each

successive time step, resulting in a progression

of new patterns. In empirical studies, change

rules can become more complex. For example,

one study assessing patterns of urban growth

over time in the Bay Area of California for-

mulated transition rules based on slope, roads,

and amount of nearby development (Clarke,

Hoppen, and Gaydos 1997).

CA models are often combined with other

techniques such as Markov models, overviewed

earlier. Markov analysis alone projects future

change based on transition probabilities cal-

culated from time series data. Integrating CA

with Markov models allows neighborhood

interactions to be integrated so that the amount

of change between any two types is derived

from a Markov process, while change locations

are prioritized based on CA rules. Together,

they better address spatial dependence while

predicting changes over time. Despite their

utility in projecting change and investigating

emergence, CA models have a number of draw-

backs. Speci cally, they are weak in making links

between real-world, human decision-making

and conversion rules, and they have a poor ability

to project over long time periods (due partly to

an inability to include feedbacks that operate

across spatial, temporal, or organizational scales;

NRC 2014).

Agent-based models

Agent-based models (ABMs), also called

multi-agent systems and individual-based mod-

els, focus on lower-level processes that generate

larger-scale patterns (Parker et al. 2003). Unlike

a CA model that only deals with  xed pixels,

ABMs use agents that are allowed to move in

time and space. Its input often includes (i) at

least one layer of raster data, ArcGIS shape le,

or ASCII  le (increasingly vector data as well)

that contains spatial information; (ii) data for

agent attributes (e.g., an ASCII or Excel spread-

sheet for agent information), and (iii) rules and

parameters that make the actions or processes

play out. ABM models can be used for either

prediction or explanation purposes. The output

of ABMs can be di"erent graphs (e.g., popula-

tion dynamics over time), maps (e.g., shape les,

ASCII  les), or numbers (e.g., An et al. 2005).

Each agent contains a number of the attributes

that characterize it, and behaviors that can cause

changes to the agent itself, to other agents, and

to the environment as time passes. As in a CA

model, ABMs function based on a set of decision

rules. As these decision rules play out over time

steps and agents interact with other agents and

the environment, they update the attributes of

themselves, other agents, and the environment.

Consequently, the system represented by the

ABM will evolve over time.

When applied to human-environment systems,

urban systems, or other geographical systems,

agents can include individuals, households,

neighborhoods, or other hierarchical groupings.

9
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The spatial domain in which the agents operate

is often made up of GIS data layers that can

include pixel-based or sometimes vector-based

representations of the landscape. The represen-

tation of time is via time steps, or ticks. At each

tick, which coincides with a real-world time

interval such as a month or year, agents make

decisions regarding themselves, other agents,

and the environment. In a human-environment

ABM, for example, these decisions can relate to

things such as marriage, childbirth, the decision

to collect fuelwood in a forest, or the decision

to create a new household where there had

previously been forest (An et al. 2005).

ABMs are especially suited for modeling

complex systems, allowing the investigation

of emergent properties, due to the fact that

each agent has autonomy, intelligence, ability to

communicate and interact with other agents and

the environment, and ability to make informed

decisions regarding the environment (Parker et al.

2003). These features allow ABM to characterize

further features of complexity such as feedbacks,

nonlinearity, thresholds, time lags, and resilience.

In doing this, they demonstrate strengths in inte-

grating heterogeneous, multiscale data, including

a diverse array of agent types at di"erent hierar-

chical scales. Despite these strengths, challenges

in ABM implementation include steep learning

curves for newmodelers, high data requirements,

challenging veri cation methodologies due to

path dependence, equi nality, and multi nality

(Brown et al. 2005; NRC 2014).

Veri cation, validation, and other
aspects in spatiotemporal analysis

All of the spatiotemporal methods above purport

to have utility in understanding, describing,

and/or predicting spatiotemporal patterns of

interest. In order to show this utility, the degree

to which models demonstrate agreement among

their theoretical frameworks, model predictions,

and real-world observations needs to be estab-

lished. Veri cation refers to the task of making

sure that the construction of the model (usually

in computer code) re=ects the design intentions

of the modeler, and is achieved partly through

debugging (NRC 2014) and a set of other tech-

niques (An et al. 2005). Validation can jointly

refer to “structural validation,” or demonstrating

that model processes largely re=ect or approxi-

mate real-world processes, and “outcome valida-

tion,” in which model outputs are compared to

real-world data of the same outcome through,

for example, map comparison if the outcomes

are maps (NRC 2014). One of the most-used

methods is to compile an error matrix and calcu-

late a Kappa statistic based on a sample of points,

tabulating cases of agreement and disagreement

between types. However, other methods for

outcome validation have arisen that allow more

sophisticated comparison. These include fuzzy

set approaches, multiple resolution map compar-

ison, and the variant-invariant method (Brown

et al. 2005; Pontius, Peethambaram, and Castella

2011). These methods are crucial in examining

outcomes of spatiotemporal analysis.

Conclusion

The aforementioned models represent some,

though not all, of the methodologies used in

spatiotemporal analysis in geography, environ-

mental studies, and related disciplines. Other

techniques, including some geovisualization and

land-change models, contain overlap with these

spatiotemporal analysis techniques but are less

explicitly focused on looking at changes over

both space and time. Despite the strengths of the

demonstrated methods in appropriately dealing

with spatiotemporal systems, there are a number

10
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of future research directions and challenges that

the discipline faces.

In traditional spatiotemporal analysis, there has

always been a dominant focus on space. Most

analysis techniques are built around GIS software

packages that give a good representation of space,

at the expense of o"ering an adequate represen-

tation of time. Indeed, in many applications of

spatiotemporal analysis in geography, the deci-

sion regarding the number and resolution of time

steps to include is based on convenience or data

availability. While space can be represented in a

continuous way, time steps are broken up and

included without much thought as to what the

most appropriate time span and/or temporal res-

olution might be (An and Brown 2008; Wang

et al. 2013), which might cause important pat-

terns and processes to be overlooked and thereby

generate biased or even misleading conclusions.

Spatiotemporal analysis, with limited capability

to handle temporal variability, has a bunch of

other implications. First, changes in state are

often limited to low temporal accuracy, as it can

only be said that a change happens before or after

a time step, or between two time steps. Survival

analysis models o"er one potential solution

to this problem by appropriately dealing with

censored data. Second, the common methods

of storing data based on consecutive time steps

may be ine%cient in data processing and data

storage when compared to time-based storage

techniques that are organized by the times an

event happens (Peuquet and Niu 1995). Finally,

it has been noted that spatiotemporal models

are generally conceptualized using an absolute

conception of space and time. Relative concep-

tions of space and time, focusing on where and

when events happen in relation to other events

rather than in relation to  xed space time stamps

(latitude/longitude, clock time), should be fur-

ther developed. Fuzzy land-change methods are

one methodology moving in a direction toward

relative space–time conception and deserve more

attention in the future (An et al. 2015).

The techniques discussed in this entry o"er

an introduction to the many methods used

for spatiotemporal analysis in geography, envi-

ronmental studies, and related disciplines. An

important note is that many of these models can

be combined to create hybrid models (NRC

2014). Some, such as CA/Markov models, or

the use of statistical methods in parameterizing

an ABM, have been demonstrated here, though

other hybrid combinations exist. When under-

taking spatiotemporal analysis, the selection of

a proper model is key to characterizing the

desired pattern or processes. Understanding the

models listed above, each with their advantages

and drawbacks, provides a starting point for

conducting spatiotemporal analysis.

SEE ALSO: Agent-based modeling;
Wbieg0891

Geographic information system; Spatial analysis;
Wbieg0152

Wbieg0505

Time geography and space–time prism
Wbieg0431
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