
 

Introduction to multilevel modeling  

Instructor: Li An 

The term “multilevel” means different levels or units of analysis, which are typically (not always) 

hierarchically nested: level 1 (lowest; e.g., pupils), then level 2 that each contains level 1 individuals (e.g., 

schools), and so on. 

Groups and their members can exert influences on each other, suggesting that the variability in the 

outcome of interest may have contribution from both individual members and groups. Ignoring 

grouping effect may give rise to incorrect conclusion, such as finding differences and relationships that 

do not exist (the “formal” style example on p.508). The reason may be that individuals within the same 

group are correlated or clustered.  

Multilevel data structures (membership): 1) hierarchical structure: individuals year/time 

neighborhood; or response or casepersonneighborhood (the classic design for data collection); 2) 

non-hierarchical structure: cross-classified structure: individuals at level 1 and workplace and residential 

neighborhood at level 2; or multiple membership structure: individuals at level 1 and neighborhoods 

that overlap (i.e., some individuals belong to more than one neighborhood). 

Motivations of MLM: 1) Evaluating sources of variations in the outcome: from compositional or from 

contextual differences? 2) Understanding varying roles of contextual differences on different individual 

groups. 3) Ascertaining the relative importance of individual and neighborhood covariates. [Note: the 

term ecology or ecological is kind of used differently, which means context or contextual (related to 

Fig.C.7.1).].  

MLM formulation: Suppose that a number of individual people, belonging to 50 neighborhoods, are 

sampled for a health study. The dependent variable is a certain health score yij, and two exemplified 

independent variables are individual level measure poverty (x1ij; 1 for poor and 0 for non-poor) and a 

neighborhood-level socioeconomic deprivation index w1j (note i for individual people and j for 

neighborhoods). Then the model at level-1 is:  

 yij = β0j + β1x1ij + e0ij      (1) (C.7.1 in the paper—see footnote #1)  

This equation means: the health score of an individual i who is in neighborhood j (yij) can be expressed 

as the sum of the intercept for neighborhood j (in this example numerically equal to the mean health 

score of all non-poor people in neighborhood j) in which individual i is located (β0j), a portion explained 

by individual i’s poverty level (x1ij) with a global coefficient (β1), and an individual level error term (e0ij)
2. 

                                                           
1
 The book chapter by Subramanian (2010) with full information attached at the end. 

2
 Pay attention to the subscript use: i is for individuals and j for neighborhoods or higher level units; 0 for intercept 

or error on the y axis, and 1 for a predictor variable (we could have variables x2, x3, and so on). Also pay attention 
to variable or parameter names: English letters for the dependent or response variable (y) or independent 
variables (x) and errors (e at individual level and u at neighborhood level), Greek letters (α, β) for coefficients or 
parameters that need to be estimated from data. 



 

We can further break the mean health score of neighborhood j into two parts: a global average for all 

the neighborhoods (β0) and a departure of neighborhood j from this global average (u0j): 

 β0j = β0 + u0j       (2) (C.7.2 in the paper) 

Substituting Equation (2) into (1), we get the basic multilevel model Equation (3): 

 yij = β0 + β1x1ij + (u0j + e0ij)     (3) (C.7.3 in the paper)  

which is comprised of a fixed part (β0 + β1x1ij) and a random part (u0j + e0ij). The two error terms are 

assumed to be uncorrelated and follow two normal distributions with zero mean. Of particular interest 

are the neighborhood level errors u0j, which can be calculated using Equation C.7.7. 

Contrary to the random effects model as shown in Equation (3), it is possible to create a set of 

neighborhood dummy variables (49 if we have 50 neighborhoods) and put them into a regular OLS 

model (termed fixed effects model; Equation C.7.8, detail skipped). It is pointed out that compared to 

the fixed effects model, the random effects model (related to the above u0j) is superior for reasons like 

use of information for all neighborhoods and keeping the neighborhood coefficients from shrinking to 

an overall coefficient (i, ii, and iii on p.517). Although these two types of models are related (from 

Equation C.7.9 to C.7.12), it is shown that the fixed effects model is unsuitable for questions that the 

random effects model can answer. 

The above model (Equation (3)) is a random intercept model, i.e., the intercept β0j has a random part u0j 

that varies from neighborhood to neighborhood. However, we can also relax the “fixed” coefficient β1 

and let it change from neighborhood to neighborhood. Following similar procedure as how Equation (3) 

is derived from (1) and (2), we can get a random coefficient (or random slope) model as below: 

 yij = β0 + β1x1ij + (u0j + u1jx1ij + e0ij)     (4)(C.7.16 in the paper) 

Where the poverty differential (or the slope of variable x1ij) is no longer constant across neighborhoods, 

but varies at a random amount u1ij. There are some normal distribution based assumptions about 

variance and covariance for the three random terms u0j, u1ij, and e0ij. The model expressed in Equation 

(4), often called random intercepts and slopes (name not appropriate though) model, models variance of 

the above error terms as function of predictors. The above random intercepts and slopes model assumes 

a homoscedastic variance for the level-1 error term e0ij, which does not have to be so and can be further 

modeled as a function of predictor variables, e.g., we can use e1ijx1ij + e2ijx2ij to replace e0ij in C.7.20 (x1ij 

and x2ij are dummy variables representing  the non-poor and poor people; detail skipped). 

The above models (Equation (3) and (4)) have not used the level-two variable neighborhood-level 

socioeconomic deprivation index w1j. We can assume that this variable can be used to predict the 

neighborhood-level intercept (β0j) and slope (β1j)—with some mathematical formulation work, the 

multilevel model can be written as: 

 yij = β0 + β1x1ij + α1w1j + α2w1jx1ij + (u0j + u1jx1ij + e1ijx1ij + e2ijx2ij) (5)(C.7.23 in the paper) 



 

Note that α1 and α2 are coefficients of the neighborhood-level index w1j and an interaction between the 

two level-1 and level-2 variables. This model allows for not only individual-(by β1) and neighborhood-

level (by α1) contribution to the dependent variable, but also the cross-level effect (by α2).  

All the above models have a common feature: they model the average (via intercept) of the dependent 

variable and variation (via slope) around the average at different levels. MLM model can be used in 

instances with 3 or more levels, with different types of response variables (e.g., binary, proportions, 

counts, multinomial), with time series data (e.g., measurements at discrete times as level-1 data), with 

multiple membership (e.g., 20% for neighborhood 1 and 80% for neighborhood 22), and with 

consideration for spatial autocorrelation (e.g., near neighborhoods exert higher influences than remote 

ones). In real world, relationships exist at multiple levels, where each is important in its own right. 

Therefore MLM helps to address the ecological fallacy (higher level observations imposed on lower level 

entities), individual fallacy (ignoring higher level contexts), and atomistic fallacy (imposing lower-level 

relationships to higher levels). Technically, MLM may provide more accurate standard errors and thus 

robust significance tests, and also better estimate influences on the response variable from different 

levels.  

When applying MLM, it is essential to take into consideration a few issues, such as choice of higher 

levels, representativeness of sampled neighborhoods, sample size (more neighborhoods if possible), and 

limitation of MLM in making causal inferences. 
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