
 

Introduction to latent trajectory modeling  

Instructor: Li An 

Traditionally called latent growth curve models, latent trajectory models (LTM) are a relatively new 

technique to model changes of a certain phenomenon over time. The term latent is probably from the 

structural equation modeling (SEM) literature, where a latent variable is an abstract construct (or 

concept) that cannot be directly measured (e.g., socioeconomic status), but can be approximated by 

some measureable variables. The term trajectory is more accurate, as LTM can be used to model not 

only growth, but also decline and other more complex non-monotonous change patterns (such as cosine 

function)—so do not think LTM is only for phenomena that increase (or decrease) only over time. 

In mathematical terms, change trajectories over time can be described in a number of functions, such as 

linear (y = α + βt), quadratic (y = α + β1t + β2t
2) and exponential (y = θeγt), where t is time (or similar 

measures like age) and y is the response or dependent variable of interest, e.g., NDVI, body weight, 

reading scores as in the book chapter by  Guo and Hipp, and all the Greek letters (α, β1, β2, θ, γ) are 

parameters that jointly describe the shape of the trajectory of interest. 

In LTM literature, it is a convention to treat these change parameters such as α, β1, β2, θ, and γ as latent 

variables, and use the measureable response (and other predictor) data to predict these terms. As 

mentioned above, LTM follows the SEM convention, where circles represent latent variables (here α, β1, 

β2, θ, γ, etc.), rectangles measured variables (e.g., reading scores), triangles constants (not used in Guo 

and Hipp 2004), double-head arrows variances or covariances (not used in  Guo and Hipp, 2004), and 

single-headed arrows regression coefficients/weights. Let us assume that the change trajectory takes 

the quadratic form with 5 times (t = 1, 2, 3, 4, and 5). First we build a random intercept and random 

coefficient model without predictor variables1 in the MLM domain (measurements over the five time 

points are nested under individual people): 

  yij = β0 + β1tij + β2tij
2 + u0j + u1jtij + u2jt ij

2 + eij         (1) Equation 15.12 in the chapter 

Note the notation here: i represent different times, and j different persons. The interpretation is similar 

to what we have done in MLM: person jth’s reading score at time i can be expressed as the sum of a 

global mean β0 plus a person-specific random intercept u0j, a contribution from the time when person j’s 

ith measurement is made (tij) at a constant or fixed differential β1 and a jth person related random 

differential u1j, a contribution from the square of time (the quadratic term) when person j’s ith 

measurement is made (tij
2) at a constant or fixed differential β2 and a jth person related random 

differential u2j, and an error term related to person j’s ith measurement. Once the terms u1jtij + u2jt ij
2 are 

removed, the above model is simplified into a random intercept only model, where both coefficients are 

fixed. Again, Equation (1) is an MLM where measurements over time are nested within individual people, 

which corresponds to the “classic ‘longitudinal or panel design’” mentioned in Subramanian (2010)2.  

                                                           
1
 This model aims to explain the dependent variable as a function of time ONLY. 

2
 The chapter we discussed earlier. 



 

As mentioned in the LTM literature including Guo and Hipp (2004), some basic LTMs are very similar 

even identical to corresponding MLMs (random effects models). Below we specify an LTM model that 

corresponds to the above model in Equation (1)—note the notation is different, where α is for the 

intercept, β for the slope, and β2 for the quadratic term (note: think of β2 as another parameter; the 

square is a bit confusing): 

  yit = Λ1tαi + Λ2tβi + Λ3tβi
2 + eit   (2) Equation 15.13 in the chapter

 

Note that t may take different values (e.g., 1, 2, 3, 4, 5) if we collect longitudinal data at five times. Λ1t = 

1 for all t values (Λ pronounces lambda; representing the influence of a constant αi on the repeated 

measures yit), which mathematically simplifies Λ1tαi to be αi, the intercept; Λ2t is a series of numbers that 

represent a linear progression of time, say, 0, 1, 2, 3, and 4 (by convention; not necessarily in this way)3, 

which is similar to tij above; and Λ3t is a series of numbers that go up quadratically: 0, 1, 4, 9, and 16, 

similar to tij
2 in Equation (1)4.  

To better understand Equation (2), let us look at time 3: yi3 = αi + 2βi + 4βi
2 + ei3, which says at time 3 the 

ith individual’s score (yi3) can be predicted by the sum of individual ith intercept (average over the five 

times), a contribution due to time (scaled by βi) and time square (scaled by βi
2), and an individual specific 

error term at time 3 (ei3). 

Note that the three parameters (or latent variables) αi, βi, and βi
2 in Equation (2) all have a subscript i, 

implying they are not constant. We can further break them as: 

  αi = uα + 
i

      (3) 

  βi = uβ + 
i

      (4) 

  βi
2 = 22

i

u


      (5) Equation 15.14 in the chapter 

where uα, uβ, and 2
u are the means of the intercept, slope, and quadratic term (applicable to all 

individual persons or units), and 
i

 ,
i

 , and 2
i

 are random residuals of the intercept, slope, and 

quadratic term that are specific to each individual. Substituting Equations (3)~(4) to Equation (2), we can 

get a random coefficient LTM model without predictors, which is column 3 in Table 15.7 on page 358 of 

Guo and Hipp (2004). Note that the random intercept and random coefficient model (Equation (1); MLM) 

and the random effects LTM (Equation (2)), i.e., columns 3 and 4 in Table 15.7, give exactly the same 

coefficients (except some differences due to rounding). 

So far, we have not included predictor variables, time-invariant (values stable over time) or time-varying 

(values change over time), in predicting αi, βi, and βi
2 as in Equations (3)~(5). But we can do so and 

                                                           
3
 In Guo and Hipp (2004), only 0, 1, 2, and 3 (no 4), which states that the slope only begins at time 2 (i.e., with 

inference to time 1). The formulation here is consistent with other related literature. 
4
 In Guo and Hipp (2004), only 0, 1, 4, and 9 (no 16). The same as above. 



 

include age, income and other variables to predict these latent variables in Equations (3)~(5)5. The two 

LTMs on Table 15.8 (columns 1 and 3) show the results of these models. 

Even though both types of models in the above examples give nearly the same results, there are some 

differences. For instance, the LTM has some overall model fit index such as CFI, TLI, and RMSEA (Table 

15.8, Guo and Hipp 2004). There are other advantages and disadvantages related to both MLM and LTM 

approaches (Preacher et al., 2008). 
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5
 Similarly we can add these predictor variables to Equation (1) and build corresponding more sophisticated 

random intercept and random slope MLM. 


