Pseudo-code for CHANS Modeling

Model Initiation

The Create-environment function reads in external data to form the model environment (world).

Creat e- envi ronnent ()

[
]

Read external data and assign environnental and geographi c data pixels;

The Create-agent function reads in external data to form the model agents. The set attributes functions
referred to here are defined below.

Create agents()
[
Set - person-attributes for all person agents;
Set - househol d-attri butes for all househol d agents;

Setup Agent Attributes

Set-person-attributes is a 3rd—level procedure, called by the initiation process and several 2nd level
procedures. min-birth-age, and max-birth-age could be set as global variables that have constant values
for all agents and all times.

Set - person-attributes (agent, seed-agent = null, type)
[
If (type = “initiation”) then
** Set up attributes based on real individual data through reading
external files.
1) empirical histogram#1 is percent of married wonmen having 0, 1, 2,
..., over 6 children;
2) enpirical histogram#2 is histogram of tinme steps between marri age
and bearing 1st child;
3) enpirical histogram#3 is histogramof tinme interval between
consecutive births **

Set personal 1D, age, education, address, |ocal residence, etc. from
readi ng external file;

** Bel ow set up attributes based on aggregate data or regression**
Set birth-plan as function (age, education, etc.) or enpirical
hi st ogr am #1;

Set first-birth-interval as function (age, education, etc.) or
enpi ri cal histogram #2;

Set birth-interval as enpirical histogram #3;
else if (type = “new birth”) t hen ** for new babies **

Set education as the max of father and nother (seed-agent)’s education
or function (sex, |ocal environnent, etc.) ;

Set uni que personal | D and household I D as nother (seed-agent)’s
househol d | D;

Set address or |local residence as nother (seed-agent)’s address;
else if (type= “marriage”) t hen

Set birth-plan, birth-interval using histogramor use regression

nodel s;

Set first birth time = marriage tinme + first-birth-function;

Set address or |ocal residence as husband (seed-agent)’s address;
else if (type = “in-mgrants”) then

Set education as the seed-agent’s or fromenpirical histogramor use

educat i on nodel

Set uni que personal |ID;
If (agent is female AND agent is married) then

Set birth-plan, birth-interval to equal the seed-agent’s or from

enpirical histogram

Set address or |local residence as seed-agent’s address;

I f (agent has no children) then

Set first birth time = marriage tinme + first-birth-function;

]

Set-household-attributes is used to initialize new households in the model, whether at model initialization
(time zero) or when new households form due to in-migration.

Set - househol d-attri butes (househol d agent, seed-househol d-agent = null

type)

[

If (type = “initiation”) then
** Bel ow set up attributes based on real househol d data through readi ng
external files**

Set househol d ID and address or |ocal residence, etc. fromreading
external file;

If (type = “in-migration”) then
Set address or local residence, etc. from seed-househol d-agent;

Set uni que household ID;, **ID not reused**

Set househol d size X from seed- househol d- agent ;
Create X person agents;

Set-person-attributes for these X agent;

If (type = “new househol d establishnment”) then

Set address or |ocal residence, etc. from seed-househol d- agent
(parent’s househol d);

Set uni que household ID;, **ID not reused**

Major process

Model-loop is the main loop in the model. It determines the order in which events occur in the model. The
loop runs through time steps 1, 2,..., N (N is the simulation time span). Sometimes this loop is
implicit—e.g., time-ticks automatically move and we do not see an explicit loop.

Model -1 oop
[

Loop through all househol ds

[
Check househol d sizes; ** elimnate households with size=0 **
M gr at e- out - househol d- 1 evel ;
M gr at e-i n- househol d- | evel ;

Loop through all potential new households within the househol d:

[

For each potential househol d agent:
If (will-establish-household is true)

[
]

Est abl i sh- househol d;

]

Loop through all marriages within the househol d:

[
** Potentially subject to divorce with a snmall probability**
Di vor ce;

]

Loop through all persons within the househol d:

[

G ow (die, or increnment age);

If (person agent is qualified-for-marriage) then
Marry;

I f (person agent is qualified-for-birth) then
G ve-birth;

I f (person agent is qualified-for-outm gration)
M gr at e- out -i ndi vi dual - | evel ;

If (person agent is qualified-for-in-mgration)
M grat e-i n-i ndi vi dual -1 evel ;

Logical tests

will-establish-household is used to test whether a new household will form out of a "potential household".

wi | | -establish-househol d

[

Househol d- est abl i sh probability = function (household agent, | ocal
envi ronment, potential new household attributes) or enpirical
hi st ogr am

I f (size of househol d-agent > m ni num househol d-si ze AND random # <
Househol d- est abl i sh probability) then

[
]

Set household to be will-establish-househol d;

]

qualified-for-marriage is used to test whether a person is able to get married at a given timestep (they
must be old enough, single, etc.).

qualified-for-marriage

[

if (Person agent is single AND agent age > m n-marry-age AND agent age
< max-marry-age) then

[
]

Set person agent to be marriage-qualified

]

qualified-for-birth is used to test whether a person is able to give birth at a given timestep (they must be
old enough, not have already had beyond their desired number of children, etc.).

qualified-for-birth

[
If (person agent is female and married AND person’s age > nin-birth-age
AND person’s age < max-birth-age AND nunber of children < birth-plan)
t hen

[
Set person agent to be birth-qualified;

]
]

qualified-for-outmigration is used to test whether a person will out-migrate at a given timestep.

qual i fied-for-outmgration

[

I f (person agent’'s age > min-outnigrati on-age AND person age <
max- out mi grati on-age) then

[
]

Set person agent to be outmigration-qualified

]

qualified-for-in-migration is used to test whether a person will in-migrate at a given timestep.

qualified-for-in-mgration (seed-person)

[
if (seed person age > min-in-mgration-age AND person age <
max-i n-m gration-age) then

[
]

Set person agent to be in-mgration-qualified

Agent Actions

Grow increments an agents age by one timestep.

G ow (agent)

[
Mortality-probabilities = function (agent, |ocal environnent) OR
nortality histogram by age/ sex;

I f (random #s match nortality-probabilities) then

[
Agent di es;
Renove agent from agent-1Iist;

]

El se

[

Agent renmi ns;
Agent’s age grows by 1; ** Age = Age + 1 **

]

Migrate-out-individual-level makes an individual migrate. Local environment could be agent’s residence;
min-migration-age and max-migration-age could be set as global variables that have constant values for
all agents and at all times.

M gr at e- out -i ndi vi dual -1 evel (agent, agent-list, |ocal environnent)

[
outm g-probabilities = function (agent, |ocal environnent) OR
out -nmigration histogram by age/sex;

I f (random #s agree match outm g-probabilities) then

[
]
El se

[
]

Agent nigrates out; ** Renove agent from agent-list **

Agent remains; ** Agent remains on agent-list **
]

Migrate-out-household-level makes an entire household migrate.

M gr at e- out - househol d-1 evel (agent, househol d, househol d-1i st)

[

Set whol e- househol d- out - mi g-probability to be function (agent, | ocal
envi ronnment) OR whol e househol d m gration histogram

i f (random # < whol e- househol d- out - m g- probabi lity)
[

]

Renove- househol d (agent, househol d, househol d-1ist);
]

Migrate-in-household-level makes an entire household migrate in.

M gr at e-i n- househol d-| evel (seed agent, household-list, |ocal environment)

[
i nm g-probability = function (local environnent, seed-agent attributes)
OR in-migration histogram by age/sex;

If (random # < inm g-probability) then
[

]

Create a new househol d;

Set - househol d-attri butes for this agent using seed-agent;

]

Marry makes two agents marry each other. min-marry-age is set as a global variable with a constant value
for all agents and at all times. Below we only S1 to be a female.

Marry (agent S1, single-male-list, single-fenmale-list, |ocal environment)

[
femal e-marry-probabilities = function (agent Sl1, |ocal environnment) OR
femal e marry hi st ogram by age;

If (agent S1 is femal e AND random #s match femal e-nmarry-probabilities)
t hen
[
If (S1 is single and random # < enpirical probability) then
[
** Allow marrying an in-mgrant **
Set S1 status to marri ed;
Create new i n-m grant S2;
Renmove S1 fromsingle-female-list;

]

El se | oop through single-male-list:

[
Find a random agent S2 from single-male-|ist;
Cal cul ate age difference between S1 and S2;
Calculate ethnicity difference between S1 and S2;
Cal cul ate xxx difference between S1 and S2;
Marry-probability = product of probabilities due to age,
ethnicity, and other Differences

If (random # < Marry-probability) then
[

Set S1 status to married;

Renove S1 fromsingle-female-list and S2 from
single-male-list;
Get out of | oop;
]
]
If (S1 is married) then
[
Change S2's status to marri ed;
Set S1's spouse to be S2 and S2's spouse to Si;
Set S1 and S2's narriage age to be their current age;
]
]
So far this nethod does not guarantee narriage at this step

]

Divorce makes two agents marry each other. Divorces can occur with a probability set as the probability of
a divorce occurring for a marriage in a given timestep OR they can be modeled with a probability that is
calculated for each spouse (for example a wife may be more likely to divorce her husband than for her to
divorce him, or vice versa). Here we use the simple model of probability of a marriage ending in divorce in
a given timestep. Therefore we only want to consider each marriage ONCE, so loop through the agents,
and make sure that we do not consider divorce for both spouses, only the first we see in the loop (as the
probability of divorce in this simple case is independent of the spouses characteristics. **

Di vorce (agent, househol d, househol d-1ist)

[

di vorce-probability = function (local environnment, agent attributes) OR
di vor ce- hi stogram by age/etc.;
If (random # < divorce-probability) then

[

Add husband to single-male-list and wife to single-fenale-list;
Change nmarriage status of husband and wife to single;

Est abl i sh- househol d with wife as nobve-out-person and type equal to
“di vorce”;

]

Give-birth makes an agent given birth. min-birth-age, max-birth-age could be set as global variables that
have constant values for all agents and all times.

G ve-birth (agent, mn-birth-age, max-birth-age)

[

if (agent has zero child) then

[

femal e- 1st-ki d-probability = function (agent, |ocal environnment) OR
f emal e- 1st - ki d- hi st ogram by age;

]
If (random # < femal e-1st-ki d-probability) then

[

]
if ((first-birth is TRUE) OR (agent has one or nore children AND

current tinme — time of last birth >= birth interval)) then

[

Set first-birth to TRUE;

** for bearing 2nd or later child **
create an agent (child);

Set - person-attributes (child, type= “birth”);
]

Migrate-in-individual-level makes an agent in-migrate. Local environment could be agent’s residence;
min-seed-agent-age and max-seed-agent-age could be set as global variables that have constant values
for all agents and at all times.

M grate-in-individual -1evel (seed-agent, agent-list, |ocal environment)
[
i nm g-probability = function (local environnent, seed-agent attributes)
OR in-mgration histogram by age/sex;
If (random # < inm g-probability) then
[
Create a new agent;
Set agent age to be close to seed-agent;
Set-person-attributes for this agent using seed-agent;

]

Establish-household forms a new household.

Est abl i sh- househol d (seed-househol d, nove-out - persons, type,
househol d-1ist, |ocal environnment)
[
Create a new househol d;
If (type = “househol d establishnent”) then
[
** This clause is for cases |ike a new househol d bei ng established
by a married couple **
Set the |l ocation of the new household within or near
seed- househol d;
]
Else if (type = “divorce’) then
[
Set the location of the new household to be randonly | ocat ed;
Set other attributes of the new household to equal (be close to)
those of the Seed-househol d;
Add this new household to the househol d-Iist;
Renove nove-out - persons from seed- househol d- agent ;
Add nove-out - persons to new househol d;

]

Check-household-sizes checks households to ensure they are not empty. Any empty households are
removed from the model.

Check- househol d-si zes (househol d-1i st)

[

Loop through all househol d agents:

[
If (the size of household = 0) then

[

Renove- househol d (househol d, househol d-1i st)

]

Remove-household removes a household agent from the model.

Renove- househol d (househol d, househol d-1i st)

[
]

Remove househol d fromthe househol d-Iist;

Set-first-birth-function sets the first birth function for an agent. This function relies on min-1st-birth-model,
a global variable, which may take values of “simple”, or “histogram”, or “regression” **

Set-first-birth-function ()
[

If (mn-1st-birth-nodel is equal to “sinple”) then

[
]

Else if (mn-1st-birth-nodel is equal to “histograni) then

[
]

Else if (mn-1st-birth-nodel is equal to “regression”) then

[

Set first-birth-function to be 12 nonths (or 1 year);

Set first-birth-function to be a nunber drawn from hi st ogram

Set first-birth-function to be equal to function (I ocal
environment, marriage age, etc.);

	Model Initiation
	Setup Agent Attributes
	Major process
	Logical tests
	Agent Actions

